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Executive Summary 

This document describes the research performed under an AFOSR lab-task started in August 
2002, and is still continuing under a different JON. Therefore, this report mostly describes results 
which are still preliminary. We conclude it by describing the final, remaining work that must be 
accomplished to complete the overall research effort. 

This research is aimed at investigating the difficult problem of hybridization of various physical 
models and numerical methods in order to more efficiently model complex, non-equilibrium 
plasma. We are especially interested in plasma conditions which contain a highly energetic 
component, here restricted to electrons. The general system under study is therefore composed 
of a bulk, dense fluid (which may contain electrons in equilibrium, i.e. "cold") and high-energy 
particles ("hot" electrons) which are either injected into the fluid or extracted by the application of 
high electro-magnetic fields. High-voltage pulsed discharges and laser-plasma are typical 
examples of such conditions, but these can be also found in sub-scale regions of other 
discharges. Because the "hot" component cannot be described by an equilibrium (Maxwell) 
distribution, one must combined essentially two numerical approaches: one for the bulk phase 
(Computational Fluid Dynamics - CFD - in its various formulations), and one for the high-energy 
component, such as Particle in Cell (PIC) or a discretized phase-space solver (Vlasov or Fokker- 
Planck). The latter are deemed feasible only for systems with low dimensionality - pending 
revolutions in computational hardware - but we are interested in eventual application to 3D 
problems. Thus, PIC remains the method of choice for treatment of this hot component. However, 
inelastic interactions are of key importance, i.e. excitation and ionization, as well as the reverse 
processes once the energetic component sufficiently relaxes and cools. The crux of this effort 
consists of developing and verifying numerical techniques which allow an efficient coupling 
between these two components, given the complexity of interactions and the multiple scales 
involved, with special emphasis on the former1. This effort is also considered as a risk reduction 
project, in its aim at developing the basic approaches to the problem and verifying that they work 
accurately and efficiently, as opposed to a large-scale code development effort. 

The principal objectives therefore were to: (a) develop detailed fluid modeling capability to handle 
the interaction with an energetic plasma component far from equilibrium; (b) develop efficient and 
highly accurate methods to treat the coupling between the two components; (c) develop and 
investigate new algorithms or improvements over existing algorithms for generation, transport and 
reactions of the energetic component; (d) investigate modern computing software and hardware 
technologies which can facilitate achieving the overall objective. Item (a) resulted in the 
development and validation of collisional-radiative fluid and multi-fluid models, the highest degree 
of non-equilibrium that can be achieved yet still practical and still consistent with a fluid model. 
Item (b) consisted in the investigation of Monte-Carlo Collision (MCC) algorithms, discretized 
kinetics solvers and associated techniques to handle non-Maxwellian collisional-radiative kinetics. 
Item (c) was limited so far to some new algorithms for particle merging and particle transport (for 
magnetized plasma), while item (d) saw the use of modern object-oriented programming 
techniques and an early investigation of Graphical Processing Unit (GPU) programming - the 
latter being considered of key importance, and will be a principal aspect of the future, completing 
research work. Along the way, other methods were investigated and deemed more or less useful, 
to be eventually relegated to future work - funding permitting. 

The overall result is very promising, although the various research items remain disparate; it is 
therefore essential to complete the work by integration of the different achievements into a 
complete, hybrid modeling capability; this will be a focal point of the continuing research effort as 
well. 

Multi-scale techniques are envisioned as a separate research effort, once the basic physical models and numerical 
methods have been developed and validated. 

Vlll 



1.   Introduction 

This research is aimed at the modeling of basic physical processes in plasma discharges 
characterized by non-equilibrium conditions, as a result of small spatial and temporal scales, 
and/or high-energy processes. These plasmas can have one or more of the following 
characteristics: 

• Transient or steady space-charge effects that govern some critical aspects of the dynamics. 
• Significant deviations from thermal (Boltzmann) and ionization (Saha) equilibrium. 
• Significant deviations from a Maxwellian Electron Energy Density Function (EEDF). 
• Spatial and/or temporal evolutions across several physical regimes (e.g. from continuum to 

rarefied, from weakly ionized to fully ionized, etc.) 
• High energy (keV and relativistic) beams, externally imposed or self-generated. 
• Complex coupling with bounding or embedded materials (cross-disciplinary physics). 
• Microscopic sizes and/or ultra-short phenomena  requiring  non-continuum and  complex 

dynamical descriptions. 

Plasma discharges with such characteristics have complex properties which are difficult to 
predict, and yet can be of considerable importance to the Air-Force. These discharges can be 
used in electrical propulsion, advanced manufacturing and material processing, switches and 
beam sources for high-power electro-magnetic devices, power generators, advanced diagnostics, 
etc. The optimization of the design and operation of these devices requires a thorough knowledge 
of the flow and material properties, and a good predictive capability at the engineering level, while 
being able to reproduce the correct physics at the time and length scales of interest. Therefore, 
we need:: 

• A thorough understanding of the essential physical processes and scaling laws. 
• An efficient and accurate modeling and simulation (M&S) approach leading to the design of 

appropriate M&S software. 
Although the fundamental physical processes may be individually known, it is not always clear 
how their combination affects the overall operation, or at what level of detail this process needs to 
be modeled. For example, the emission of electrons from the electrode surfaces can proceed 
according to several mechanisms, e.g. field-emission, thermionic emission, field-enhanced 
thermionic emission. Each one can be modeled with reasonable accuracy, but the actual 
emission mechanism may depend on the surface condition, e.g. melting, irregularities, 
contamination, etc. Even though analytical studies can provide a guide towards the 
understanding of the discharge characteristics, the complex non-linear couplings between 
plasma, fields, and materials quickly make the problem intractable. Experimental investigations 
are also complicated by the transient nature of some effects and by the small characteristic length 
scales of the device or some of its features (sheaths, micro-protrusions). Furthermore, active 
diagnostic or probing techniques may in some cases perturb the system, thus preventing a clear 
and unambiguous measurement of the plasma properties. Therefore, modeling becomes a tool of 
major importance in this class of problems. 

Given the current computing capabilities, it may be feasible to simulate these complex processes 
with great detail. Nevertheless, one must carefully consider the numerical approaches required to 
yield a practical M&S capability for this type of multi-scale problem. These can be categorized as 
belonging to three distinct classes: 

(1) fluid methods: these include single-fluid, multi-fluid, multi-temperature, and magneto- 
hydro-dynamics (MHD) methods 

(2) particle methods: Particle-ln-Cell (PIC) [1], Direct Simulation Monte-Carlo (DSMC) [2], 
and Molecular Dynamics (MD) [3]. 



(3) "kinetic" methods : these solve the fundamental equations of evolution of the distribution 
functions (Boltzmann equation or approximations to it) in a hyper-dimensional space [4]. 

The selection of either approach depends on the plasma collisionality (electron-electron, electron- 
ion, electron-neutral, and ion-neutral) and the ratio of length and time scales. All of these 
approaches aim at solving the evolution of the Boltzmann equation, in one form or another. In the 
general case, we have: 

%-f + v-Vxf + ä-Vvf = CR(f,f) (1) 
dt 

where f(t,x,v) is the velocity distribution function* (VDF) and the right-hand-side (RHS) 
describes all exchange processes due to collisional and radiative effects. The left-hand-side 
(LHS) is an advection equation in a 6-dimensional space (3 for physical space and 3 for velocity 
space). This equation is valid for a single plasma component with no internal structure, usually 
electrons. If one were to consider also several ion species and internal structure (molecular 
modes, electronic excitation), the general distribution function would be: fa(t,x,v) where a is 
the component index, which can easily be within 10-100, depending on the complexity of the 
plasma conditions. Obviously, this is well beyond any current or near-term future computational 
capabilities; this is why most kinetic solvers are limited to 2D-2V or 2D-3V configurations and for 
a single or two plasma components. Note also that the collisional-radiative exchange term on the 
right-hand-side (RHS) can also be very complex and computationally very expensive. When 
sufficient collisions occur and are not too energetic, this collisional effect can be approximated as 
a diffusion process in the velocity dimensions; this leads to the Fokker-Planck (F-P) equation. 
Finally, if the plasma is fully ionized and very hot, it becomes collision-less, and the RHS term can 
be ignored; this leads to the Vlasov equation. Fortunately in most plasma discharges only the 
electrons, being the ones mostly affected by strong electric and magnetic fields, need to be 
modeled at that level of detail. It is therefore feasible to treat only the electrons by a kinetic solver 
and the ions with a simpler approach. 

The fluid methods provide such a simplification. The hydrodynamics (Euler) equations are 
obtained by integrating the Boltzmann equation over the velocity space, assuming that the VDF is 
very close to an equilibrium Maxwell distribution. In that case, only the conserved moments of the 
distribution need to be modeled (mass, momentum and energy). When the internal modes are not 
in equilibrium (a common occurrence in plasma discharges, due to the relatively slow energy 
exchange rate), these can be modeled separately, leading to multi-temperature and collisional- 
radiative models [5-7]. The collisional-radiative (C-R) model allows a detailed description of the 
electronic state distribution; because of the large energy gaps involved, their distribution is more 
likely to deviate from a Boltzmann distribution, and because of the range of density and 
temperature, this distribution may be difficult to characterize simply (e.g. competition between 
excitation by high-energy electrons and quenching through heavy particle collisions). The main 
difficulty with fluids is the effect of strong fields, which can severely distort the velocity distribution 
(e.g. sheaths). When the collisional rate cannot maintain an equilibrium VDF, the direct kinetic 
solver or a particle approach must be used. Finally, the multi-fluid model also allows for 
separation between the mean velocities of electrons and heavy particles; this approach is 
important for highly dynamical situations where the bulk electrons significantly contribute to self- 
generated fields. 

The PIC method [1] forms the basis of most plasma simulation codes that are dealing with high- 
temperature and/or low-density plasmas. It is the method of choice in beam simulation (e.g. RF 
weapons), geo-magnetic plasmas, and magnetic confinement fusion plasmas. However, it has 
difficulties handling dense plasmas, highly collisional plasmas, and weakly ionized plasmas. At 

Strictly speaking, particle-based methods are also "kinetic" since they also aim to describe the particle distribution; we 
choose a nomenclature where we reserve the term "kinetic" for a method which discretizes the VDF into bins of finite 
width, yielding a set of integro-differential equations (Vlasov/F-P), as opposed to discretization into a random number of 
points ("particles"). 
* The electron VDF can also be called the Electron Energy Density Function - EEDF. The latter is commonly used in the 
literature, but is strictly valid for isotropic distributions. 



high density, the Debye length is very small and cannot be effectively resolved, yielding numerical 
inaccuracies (so-called numerical heating). At high collision rates, the PIC/MCC model is highly 
inefficient, while ionizing collisions lead to explosive growth in the number of particles. Weakly 
ionized plasmas would have only a small fraction of the particles contributing to the charge and 
current densities, and statistical noise would make the computation of electromagnetic fields 
highly inaccurate. 

It is clear that an optimal approach consists of a hybrid approach, which merges two different 
techniques; (a) continuum, CFD methods for the equilibrium range, and (b) stochastic, particle 
methods for the non-equilibrium regime (although hybridization with a kinetic Vlasov or F-P 
method can also be considered). Hybrid methods can occur in various combinations; the most 
familiar one in aerospace is to consider ions as particles and electrons as a fluid. This is the case 
for example for the exhaust plumes of electric propulsion devices, where the density is too low for 
a valid CFD computation of the gas, but the electrons are relatively cold and have sufficient 
collisionality to maintain an approximate Maxwell distribution (as long as no strong field is 
applied). The opposite situation is also of interest; in that case, the density is sufficiently high that 
the ions (and neutrals) can be treated by a continuum approach (mean free path « characteristic 
gradient scale) while the electrons are subject to strong fields which distort the distribution 
function away from the equilibrium Maxwell-Boltzmann. This case is found in dense energetic 
plasma conditions, and is the principal aim of this project. We should also point out that in 
contrast to the exhaust plumes we are interested in highly dynamic situations where the location 
and extent of a non-equilibrium (particles) region may be changing in time. More importantly, 
these two components can co-exist and their interaction is of key interest. 

2. Objectives 

The overall goals of the project were as follows: 
• To develop a core capability for the modeling of plasmas far from equilibrium such as high- 

energy and micro-discharges 
• To experiment with various numerical techniques and algorithms which can facilitate and 

improve the development of effective hybrid modeling 
• To implement a suite of object-oriented software tools that can be easily extended and 

maintained. 
• To validate the code against experimental data and other codes for various discharges. 
• To support the analysis and development of advanced plasma discharge concepts in 

support of future advanced war-fighting technologies (beam propagation and beam-target 
interactions, laser-plasma, space propulsion, hyper-spectral diagnostics, plasma-assisted 
hypersonics...). 

It is important to emphasize that the project is mostly designed as a risk-reduction task, i.e. the 
determination of fundamental design concepts, approaches and algorithms which can make the 
overall goal of high-performance, hybrid modeling of complex non-equilibrium plasma possible. It 
is not a large-scale software development project per se, although software design approaches 
are investigated as well. 

3. Challenges 

The project is particularly challenging, requiring the implementation of complex physical models 
and advanced numerical methods. The general problem of interest involves the interaction of 
highly energetic plasma particles with a dense background, in the presence of high electro- 
magnetic fields. It is therefore characterized by: 

• Multi-scales: the high-energy plasma component can evolve on short time scales, while the 
dense background plasma relaxes slowly; a large hierarchy of spatial scale is also present, 
imposed by both physical and numerical limitations. 

• Multi-physics: particle, fluid and field transport are required, collisional-radiative and 
ionization kinetics, along with material effects (emission, sputtering, phase change), non- 
ideal equation of state (EOS), Magneto-hydrodynamics (MHD) and radiation transport (RT). 



• Multi-math (or multiple numerical methods): several different numerical descriptions must be 
combined for the Non-Maxwellian velocity distribution function (VDF) for high-energy plasma 
components, the continuum description of the dense background fluid, and the multi-scale 
models of couplings between the two components and the fields. This item is generally 
considered as a consequence of the first two. 

Multi-scale/multi-physics problems remain one of the principal challenges in the computational 
community, and there is a growing body of work on fundamental approaches to those. The 
present project only explores a small aspect of this problem, as will be described in later sections. 
The level of detail implemented here into the physical models may be somewhat limited, given 
the resources available. However, the principal objective is to develop a core capability that can 
be further extended in the future to include more refined models and database. We attempted to 
build the software such that this extension process would be greatly facilitated. 

4.   Approach 

4.1. Modeling Issues 

In most cases of interest here, the plasma can be decomposed into a "bulk" plasma and a highly 
energetic component (to simplify, electrons). The general problem consists of modeling in an 
efficient and accurate way the dynamics of the complete distribution function of each plasma 
component. If the bulk plasma is strongly collisional (i.e. sufficiently dense), it can be modeled as 
a fluid, albeit at various levels of thermal non-equilibrium. Otherwise, one must use a particle 
method such as DSMC or PIC to model its dynamics. Typically, the energetic component is itself 
a function of time and space; for example, at the onset of the discharge there can be very few 
energetic particles; during a mid-phase the energetic component is at a maximum, until it finally 
relaxes through collisional exchange with the bulk and disappears . This would be the case of a 
particle "beam" (meaning any strongly non-equilibrium, energetic component) injected into a 
dense gas; examples of this type of problem would be the pseudospark discharge [8], laser 
plasma interactions [9], streamers [10], gas-filled capillary discharges [11], etc. 

Because the pseudospark is a particularly representative of the physical problem, this discharge 
was examined in detail in the early part of this project. A few key physical phenomena 
characterizing the discharge are the following (see Figure 1): 
• Electrons emitted from the cathode surface inside the hollow structure are accelerated by the 

cathode fall potential and contribute to the ionization in the negative glow region. Some 
electrons cross the negative glow region and are reflected by the opposite cathode wall; these 
"pendular" electrons can change the potential distribution and enhance the ionization rate (note 
that pendular electrons cannot be described by a unique Maxwellian distribution). 

• Neutral energetic particles (metastables and photons) generated in the negative glow have a 
higher chance of hitting a cathode surface (due to the geometrical effect), enhancing the 
secondary electron emission rate. 

• The higher ion and neutral energies and the higher degree of confinement lead to a higher 
density of sputtered metallic atoms with generally lower ionization potential. 

One can also envision the reverse process, where energetic particles are generated and extracted from the bulk itself 
(e.g. stochastic heating). 

The pseudospark device is an extension of the hollow cathode (HC) discharge, filled with a low-pressure gas (< 100 Pa), 
and was first developed as an accelerator at the University of Erlangen in Germany, in 1978. The discharge operation is 
characterized by 3 phases: (1) a very rapid current rise (up to 10 A/s), (2) a high intensity electron beam (109-1012 

W/cm2) and; (3) a super-dense glow discharge free of filaments [8]. The intense electron beam emitted in the transient 
phase of the discharge propagates in a self-focused manner and is rapidly space charge neutralized. The super-dense 
glow phase is highly conductive and the absence of filaments implies a very low erosion rate. For these reasons, the 
pseudospark has been mostly developed as a plasma opening switch (POS) [12]. Material processing applications may 
also result from the high power density electron beam [13], especially for target materials with high melting points and 
complex stoichiometric structures (e.g. high-temperature superconductors). Other, not well understood characteristics of 
the discharge may also lead to potential applications, e.g. ion beam generation [14,15] and plasma jet formation [16]. 
Advances in solid-state technology have limited the commercial potential of pseudosparks as opening switches; more 
recently, the device was investigated for its potential in high-power microwave [17]. 



CATHODE      CATHODE FALL    NEGATIVE GLOW 

Figure 1: Schematic of physical processes near cathode 

These effects combine to yield high ionization efficiencies. The electrons emitted at the cathode 
surface and accelerated in the cathode fall provide a "beam" component to the electron energy 
distribution function (EEDF). The initial phases (ignition and beam formation) of pseudospark 
operation were simulated by Boeuf and Litchford [18] with a hybrid code. As shown in Figure 2, 
the charged plasma is formed first near the anode, and when the space charge potential 
becomes of the same order as the applied potential, the plasma is able to propagate through the 
cathode hole. As the sheath contracts inside the hollow cathode, electron emission from field 
emission and field-enhanced thermionic emission become more important, and may eventually 
dominate the emission process. Hartmann and Gundersen [19] suggested a "super-emissive" 
state could be the result of surface heating of the cathode by ion bombardment. Eventually, as 
ions hit the cathode surface, sputtered atoms reaching the edge of the cathode sheath become 
ionized, then are accelerated again towards the cathode. Thus, a "self-sputtering" process [20] 
would lead to run-away ionization, and the "super-dense" glow phase is reached. Other 
explanations for this high-density conditions call for microscopic emission sites where explosive 
electron emission [21] occurs; these phenomena, extensively studied in Russia, are characterized 
by exponential growth of the current density from thermo-field emission at a microscopic defect 
(dielectric inclusion or geometric protrusion) where the electric field is concentrated, resulting in 
vaporization of the electrode material and a high density plasma plume that acts as an emission 
site with no work function (limit of Child-Langmuir emission). We note that the explosive electron 
emission process is also an excellent application of the hybrid code. 

The major procedures used in [18] have significant limitations, as described below. 

(a) Ballistic Integration 
In this procedure, the trajectories of the electrons emitted from the cathode are computed 
from the time of emission until they are lost to the system. Along the trajectory, the ionization 
events are accumulated into a source term for the bulk plasma. This is valid because the fast 
electron motion occurs on time scales much shorter than ion drift motion (which governs the 
evolution of the plasma potential). However, the fields generated by the hot electrons are 
ignored, and cannot model the high-intensity electron beam produced in the early stage of 

The mechanism has also been suggested for a space propulsion device. 
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discharge operation. A true PIC model for the high-energy electrons would be necessary to 
account for self-generated fields on the proper time scale. 

(b) Transfer to Bulk Plasma 
High-energy electrons are removed* from the system when they are collected by the anode or 
or when their total energy (kinetic + potential) falls below the ionization threshold and are then 
included into the bulk (fluid) plasma, i.e. the local electron density is increased by the 
corresponding amount given by the pseudo-particle. However, using the ionization threshold 
for operating the PIC-fluid transfer is somewhat arbitrary. Even at lower energies, the 
electrons are still capable of exciting the electronic or vibrational levels. This prevents an 
accurate modeling of all collisional-radiative effects in the discharge, which can be important. 
Furthermore, the transfer of multi-eV energy electrons would naturally distort the EEDF of the 
cold bulk plasma. The latter being assumed as Maxwellian, there is no possibility of 
accurately model this effect, unless the bulk EEDF is modeled by a Fokker-Planck. It would 
therefore be more accurate to perform this transfer only when the kinetic energy of the hot 
electrons is not too far from the mean energy of the bulk EEDF. Another similar problem with 
the model of [18] is that the secondary electrons produced by the gas from ionization by the 
fast (non-thermal) electrons, are themselves not treated as particles but are part of the bulk. 
This is inconsistent because these can have sufficient kinetic or potential energy in the 
discharge to produce further ionization. 

(c) Fluid Transport 
The approach of [18] describes only fluid motion through the drift approximation. Both 
electron and ion inertia effects are neglected, as well as the energy transport in the fluid. The 
neglect of ion inertia implies that the build-up of an ionic space charge near the anode cannot 
be accurately modeled. This effect has been considered as critical to the formation of an ion 
beam during the discharge ignition. Furthermore, ion and electron energy transport may also 
be crucial in the super-emissive glow phase, notably in controlling the heat fluxes to the 
cathode and material erosion. Other discharges are much more dynamic (e.g. laser-plasma 
plumes, plasma thrusters, etc). The solution appears straightforward, i.e. the bulk plasma 
model should include at least a multi-temperature, one-fluid model, and preferably a 
collisional-radiative model. Finally, it may also be necessary to consider at some stage the 
electron dynamics (inertia effects) in the bulk plasma; this requires an extension to a multi- 
fluid model. This would allow the description of both slow phenomena (i.e. drift model) as well 
as fast phenomena (Langmuir waves). More importantly, the multi-fluid model may be 
needed for the accurate description of dynamic double layers. 

(d) Electron emission 
The electron current from the cathode is assumed in [18] to be proportional to the ion current 
collected at the cathode (the discharge is initiated by seeding the gas in the discharge with 
electrons) (see Fig. 2). This steady-state procedure does not allow for charge build-up in the 
gas discharge during ignition, a problem which can be resolved by a multi-fluid model as 
mentioned above. Furthermore, the procedure for electron emission is quite complex, 
especially during the super-emissive glow phase, which cannot be modeled with this very 
approximate procedure. Ideally the complete plasma-material interaction physics must be 
modeled* i.e. (1) thermionic emission, (2) field emission, (3) field-enhanced thermionic 
emission, (4) photo-emission, (5) secondary emission, (6) sputtering. Note that photo- 
emission and the impact of metastables on electrode surface require a collisional-radiative 
model for the bulk plasma. 

Keeping these particles in the model while they are no longer capable of ionization would be very inefficient, since their 
number would keep increasing during the computation. 

Even while considering all these processes, we are still limited by the model description. Emission can be significantly 
influenced by the local temperature of the emission spot and the state of the electrode surface; this also implies the need 
to model heterogeneous and multi-phase effects, as well as heat conduction in the material. Sputtering is also limited by 
the fact that the ions are described as a fluid, while a more accurate approach would require a PIC model for the ions, at 
least in the sheath. 



We see that there is a number of modeling improvements necessary to correctly capture the 
physics of this discharge. In particular, in reference to the list above, we need to (a) apply the 
correct numerical treatment to the particles (PIC); (b) consider very carefully the exchange 
between fluid and the particles; (c) extend a fluid model to the appropriate non-equilibrium 
description (collisional-radiative); (d) implement the physically correct model of interaction with 
material boundaries. The last item would be a significant project in itself and is not considered 
here. The key issues being examined are items (b) and (c), and to a lesser extent - since current 
tools are well developed - item (a). The ability to exchange mass, momentum and energy 
between the particles and the bulk phase is a key aspect of hybrid modeling, for which innovative 
numerical methods must be developed and clearly the most important change that one should 
introduce is the ability to fully-couple a true PIC model with the fluid dynamics and the detailed, 
internal kinetics of ionization and excitation. 
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Figure 2: Contours of constant potential and ionization events (dots) - taken from [18]. 

Another example of plasma conditions where the hybrid model would be particularly applicable is 
in laser-plasma interactions. In the last decade table-top lasers have undergone several orders- 
of-magnitude increases in peak power using chirped pulse amplification (CPA) [22]. These 
systems can now easily reach intensities of 1019 W/cm2, which is high enough to accelerate 
electrons to relativistic energies. Prospects for further extension to the next (nuclear) regime of 
relativistic effects for protons (1024 W/cm2) are also quite good [9,23] (see Figure 3). These ultra- 
intense laser pulses are also very short, in the 10-100 fs range. For pulses of such duration many 
of the dynamical effects are frozen, and unusual states of matter can be created. For example, 
ultra-short, ultra-intense laser pulses focused onto nano-clusters (1-10 nm) strip all the electrons 
from the clusters, while the ions are barely in motion by the time the laser pulse is completed. The 
ions are left with extremely high initial electrostatic potential energy, which accelerates them to 
extremely high velocities. This "Coulomb explosion" mechanism can produce ions with kinetic 
energies in the multi-keV range, sufficient even to induce nuclear fusion reactions between 
deuterium ions, as demonstrated in several experiments by the production of neutrons of 
characteristic energy [24]. Non-linear media effects are also important in this regime; for example, 
plasma self-focusing and relativistic self-focusing effects prevent the dispersion of the laser beam 
in the plasma medium, while relativistic mass shifts induce transparency and allow penetration of 
the laser pulse into dense plasmas [23]. These new regimes of relativistic, non-linear laser- 



plasma interactions are opening new fields of research in fusion, diagnostics, and particle 
acceleration. 
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Figure 3: Peak intensity of light sources and corresponding physical regimes 
versus history. Figure taken from [23]. 

Of special interest are the laser interaction with dense media such as solid clusters and solid foils, 
but there are several issues with our understanding of the basic phenomena. First, the direct 
ionization process by the laser field is not fully characterized; while the basic physics are 
relatively well understood, the actual dynamics of the process involve complex quantum effects 
which make calculations of cross-sections difficult. The overall ionization also includes relativistic 
electron-atom collisions, while deep inelastic scattering contributes to the X-ray spectrum. The 
electron return current generates X-rays as well, and the electron dynamics are a very complex 
process involving ionization, elastic and inelastic collisions, laser propagation and absorption, 
self-induced electro-dynamic and magneto-hydro-dynamic fields, and radiation propagation. The 
sates of matter involved range from dense neutral solid matter to dense continuum, collisional- 
radiative plasmas, relativistic particles and fully-ionized plasmas. Most of the computational 
studies of ultra-intense laser-plasma interactions are conducted with Particle In Cell (PIC) 
methods; this approach assumes that the matter is already fully ionized, and does not completely 
resolve the Debye length, unless fictitious problems (this may lead to significant errors in energy 
conservation) with scaled-down density are being considered, and does not consider collisions 
between particles, or long-term relaxation of the material. The extreme disparity of equations of 
state, time scales and energy scales implies a similar diversity of numerical methods to be 
employed for their modeling, i.e. a "hybrid" model. Therefore, the computational methods being 
researched and developed through this laboratory task could also be implemented into a 
sophisticated hybrid model for the detailed and accurate modeling of relativistic laser plasmas, a 
topic of interest to AFOSR, currently funding a MURI program on ultra-intense, ultra-short pulse 
lasers for hyperspectral diagnostics. 

The usefulness of a hybrid model extends well beyond the two examples mentioned above; in 
both cases, the plasma is characterized by a dense, relatively cold gas/plasma and a highly 
energetic component accelerated by strong fields (non-Maxwellian electrons). The case of ultra- 
intense laser plasma is more severe than the pseudospark because of the energy range 
(relativistic) but the fundamental problems remain similar. One can also consider micro- 
discharges, dielectric barrier discharges (DBD), RF discharges, helicons as other examples 
where a hybrid model is applicable. Even relatively dense plasma which may appear fluid-like on 
macro-scales may require the incorporation of a kinetic model at smaller scales, e.g. 
reconnection of magnetized plasma near the X-point, as found in solar and geo-plasma or in high 
temperature field reversed configurations (FRC). The latter may require a dynamic hybrid model, 
i.e. the use of a combined fluid/kinetic model only in some regions of interest and at specific times 
- a generalization of adaptive mesh refinement (AMR) where the plasma inside the generated 
sub-grids is computed with subscale models. This additional complexity is left for the future. 
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4.2. Numerical Issues 

We have indicated above the need for accurate modeling of both fast and bulk components. For 
the former, we have several existing tools available. The easiest and most conventional 
technique is the Particle-ln-Cell (PIC) method [1], particularly useful for the highest degree of non- 
equilibrium (beams, Collisionless plasma). In the PIC method, the time-scale of electron motion is 
fully resolved and the electro-magnetic fields are computed at each time step by the cell- 
averaged distribution of particle densities and velocities. Only the shortest time-scale problems 
can be effectively resolved with this method, and only the plasmas with significant charge 
separation. The PIC method by itself is a combination of a transport algorithm (moving the 
particles in a field, interpolated at the particle position - "gather") and a reconstruction algorithm 
(computing the field from the particle positions - "scatter"). If the time scales are short and the 
fields are not static, an additional step is needed to propagate the field solution, i.e. a Maxwell 
equations solver, Collisions (if any) are treated stochastically, i.e. by a Monte-Carlo Collision 
(MCC) procedure*. The MCC computes collision events according to their probability of 
occurrence within the time step used [25,26]; since a given particle is either colliding or not, the 
accurate rates of change of the distribution function from the collisions (the right-hand-side of the 
Boltzmann equation) are obtained by relying on statistical averaging. For electron collisions, the 
procedure is similar to a test-particle Monte-Carlo: due to the difference in masses, the target 
atom can be assumed unperturbed during the collision. In the case where the energetic particle is 
an ion itself, particles must be sampled from the equilibrium bulk distribution, collided with the 
energetic particles, and the momentum and energy exchanged monitored; this approach does 
exactly conserve momentum and energy, but is expensive. Another approach is to use the more 
efficient "collision-field" method [25,26], which can also conserve momentum and energy but 
averages the velocity dependence into a collision frequency; this approach can also work for 
electron collisions. Finally, there is the interesting alternative of extended pseudo-particles, each 
one carrying its own internal distribution at an individual "temperature" [27]. This "complex particle 
kinetics" approach is potentially of great benefit, and we will show in a later section that the 
method, which involves an internal, "micro-distribution" is compatible with an algorithm for the 
control of particle numbers in strongly ionizing regimes. 

The standard MCC can be implemented with minimal effort (although the mechanics of the 
procedure are simple, the database requirements of the collisional models can be significant). As 
will be explained in a later section, the standard MCC can have significant problems when 
coupling the particles to a collisional-radiative model of the bulk plasma. Therefore, special 
attention must be paid to developing and testing new algorithms to handle this case of detailed 
interaction. 

4.3. Computational Issues 

The long-term development strategy is based on the following: 

(1) Development/refinement of a software model (Object-Oriented) for a hierarchical, multi- 
level description of the physical processes (architecture development). 

(2) Development of new algorithms for efficient and accurate interaction of multiple physical 
and numerical models (procedure development). 

(3) Implementation & validation of various SOTA models aimed at solving specific problems 
(incremental development). 

(4) Incorporation of SOTA models and numerical techniques from other sources, whether 
already implemented and validated or being developed (synergetic development). 

(5) Distribution of software and extension to multiple applications (user base development and 
feedback) 

(6) Software optimization, refinement (user-interfaces) and collaborative maintenance. 

The Direct Simulation Monte-Carlo - DSMC - method is a similar procedure [2], except that no EM fields are involved; 
the particles follow a straight trajectory between collision events and no moments of the distribution must be computed as 
source terms for the fields. 



As explained earlier, this effort is mostly aimed at risk reduction, and the R&D program is focused 
on the first three items. Item 4 is the result of leveraged activities, while items 5 and 6 would be 
addressed in a follow-on program once the code has reached sufficient maturity. 

Given the disparity of the modeling approaches and the complexity of the physics, it does not 
appear possible that all approaches can be combined into a single code per se. Such a code 
would be extremely large, difficult to use and difficult to maintain. We are mainly interested in 
developing a framework of data-structures, libraries, interfaces and modeling tools, rather than a 
single piece of software. This approach is already taking place for a number of scientific modeling 
efforts, e.g. VORPAL [28], using modern Object-Oriented architectures. 

Ideally, the software should also be grid-type independent. This implies that one could at first 
decide to implement solvers based on structured grids, but reserving the ability to implement non- 
uniform grids and their solvers at a later stage. In addition, the software should have a number of 
features aimed at maximizing its usefulness, such as: multi-dimensional capability (1D, 2D, 3D); 
ability to handle complex shapes and boundary conditions; simplified maintenance and upgrade; 
portability; high computational efficiency, and; graphical user interface (GUI) and visualization 
tools. The implementation of other models developed by other teams may also be a challenge, 
since data-structures or even languages may be different. This integration can be achieved in 
steps: (a) loose coupling (legacy codes): data exchange through I/O; (b) moderate coupling: data 
exchange through arguments to function calls; (c) tight-coupling; re-write of additional functions. 
Option (a) is applicable when the legacy codes are very capable and modern, i.e. when any re- 
write would be a significant level of effort; this is generally not the preferred option of any software 
development engineer, and we have not found any existing code that merits to be included at that 
level. Instead, we have focused on the latter two options. Thus, various methods and codes were 
developed throughout this task and have yet to be integrated into the final result; these include for 
example a Vlasov/IC hybrid solver with a 2D Maxwell equations solver, and a grid-free, Barnes- 
Hut tree method. These efforts will be incorporated into the hybrid code in the next two years. 

Besides efficient algorithm and software development, computational performance is another 
inevitable, and probably the most important issue. The multi-scale problem defies brute-force 
approaches; the time-scales of electron motion are simply much too small compared with 
hydrodynamics or MHD time-scales. Besides algorithm development to allow greater time steps 
on the fast scales, one should also consider multi-scale integration techniques and efficient 
implementation. The former is a field of study in itself and will be considered in more detail in a 
separate effort; presently it is sufficient to use low-order methods, e.g. sub-cycling. The latter is of 
special interest here, due to the recent availability of graphical processing units (GPU) for general 
purpose computing (so-called GPGPU). Since the start of this effort, the field of GPGPU has 
grown by leaps, both in terms of hardware and software development and we have refocused the 
effort to take advantage of it. Thus, algorithm acceleration using GPUs will also be discussed. 
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5.   Software Development 

5.1. Architecture 

For several reasons, Java was the language selected for the development of the software 
architecture. We found Java particularly easier to use to rapidly develop bug-free software for 
complex object-oriented codes. Although this is still considered a temporary choice, a scientific 
code written entirely in Java is entirely possible; from all the tests performed (by us and 
elsewhere) the execution speed is the same as C++, and shared-memory or distributed memory 
parallelization is very easy to achieve with multi-threading and Remote Method Invocation (RMI). 
We also tested the interfacing between Java and C (using Java Native Interface - JNI), as well 
with CUDA, the language used for graphical processing units (GPU). Portable visualization and 
GUI can be completely integrated using open-source software, and there are no issues with 
compiler compatibilities between different vendors and platforms. Furthermore, Java allowed us 
to easily test various parallelization approaches across different platforms, in a way that is 
compatible with the modern approach of "grid-computing". For example, we have created a client- 
master-server architecture (see Figure 4) with remote steering and real-time visualization. In its 
present stage, the "client" software allows the user to start a computing session, set-up the 
problem, and monitor the solution. The user can then log-off and log-on at a later time without 
interrupting the computations - only the visualization pipeline has been interrupted. Extensions of 
this approach could allow multiple sessions, encryption and user-ID checking. 

Master/Server 
Communications 

Data   X 
Analysis 

Client 

Inter-Nodal 
Communications 

Boundary 
Exchange 

Servers 

Figure 4: Possible configurations for the Client/Master/Server architecture 

Intel Pentium IV-2 GHz 

Figure 5: Comparison of Java and C performance on floating point 
operations 
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Except for a few exceptions [29-32], Java has not been considered as a viable alternative for 
large-scale scientific computing mostly because of a perceived lack of performance. However, as 
shown in Figure 5, our own tests on matrix multiplication performed a few years earlier, confirmed 
by third-party developers, indicate that at least on some platforms, the execution speed for simple 
floating-point calculations are similar to optimized C. More complete performance comparisons 
have been performed elsewhere with similar conclusions [33], and all our tests since have 
confirmed the equivalent speed of Java and C++. 

The software is decomposed into various "packages" (to keep the Java terminology), or libraries 
that contain software objects for various purposes. Some packages deal with I/O, visualization, 
mathematical and physical functions, grid set-up, thermo-chemistry, particles, fluid, electro- 
magnetism, parallelization, and boundary conditions. A thermo-chemical database for the fluid 
model has been incorporated, and a separate database manager is being developed. This 
managing software will facilitate the addition, modification and integration of key physical and 
chemical data, in preparation for computations. Thus, the database manager would create files 
that contain data for energy levels, cross-sections, oscillator strengths, specific heats, heat of 
reaction, isotopic composition, etc. We have attempted to leverage other efforts into this database 
management; an SBIR effort delivered a preliminary version of a browser that would scan existing 
on-line databases (e.g. NIST) and extract relevant data into a more useful and common format. 
This is useful because there is a lot of currently available data which resides in various 
databases; agglomeration of this disparate information for immediate comparison (the cross- 
sections can be notably different, depending on the models of electron and atomic collisions 
used), selection, and manipulation for use in a CFD or hybrid code. AFRL-Kirtland (DE) also had 
a similar interest, but decided against a joint effort. We plan on continuing to develop this 
database manager through other collaborative efforts or leverage other research programs. 

Problem initialization is performed through several pre-processors, for: (a) thermo-chemistry; (b) 
geometry; (c) initial state; (d) boundary conditions; (e) physical modeling. The latter is simply 
allowing the user to select which physical processes to be modeled (Fluid transport /Chemistry/ 
PIC / Heat conduction...). A preliminary GUI interface has been constructed to handle these pre- 
processors. We also included interfacing with a commercial grid generator (GridPro•) which can 
easily generate multi-block structured, body-fitting grids (see Figure 6), but this was principally a 
demonstration activity and there was no further work in that direction, the focus being placed on 
basic numerical and physical model development. 

Figure 6: Screenshot of GUI with grid generation (GridPro   ) 

5.2. Parallelization 
The current trends in computing and communication technologies increasingly favor the 
development of clusters of computing nodes, each node having an increasing number of shared- 
memory, hyper-threaded processors. Such clusters are routinely available with up to 128 nodes 
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of 2-4 CPU each, with specialized machines having thousands of nodes. Since the start of this 
lab-task, GPU clusters have entered the field as a powerful alternative to these conventional 
Linux cluster configurations, and the use of GPU nodes for acceleration is currently under 
investigation. As a consequence of hardware development trends, parallelization is best 
accomplished through a hierarchy of levels, including both distributed memory architecture at the 
coarse grain (multi-CPU clusters), shared memory at the finer grain (multi-core architecture at 
each server), and another distributed memory level yet possible at the finest scale (multiple GPU 
boards at each server). 

Distributed memory parallelization (across several servers/nodes) is accomplished with Java's 
remote method invocation (RMI) for all inter-processor communications [34] (in standard 
C++/Fortran this would be done with MPI). Java-RMI allows for the manipulation of remote 
objects on a local machine. As an example, and according to the architecture described in the 
previous section and in Figure 4, the client can invoke remote methods on the master, asking the 
remote method to return an object to the client, such as the computation data for visualization. 
The RMI architecture of the code therefore consists of those three levels—client, master, and 
server. The code is initialized on the master with a list of server(s) that will handle the 
computations. A "server" is a single-term denomination that can physically be, for example, a 
single-processor or multi-processor workstation, or a node in a Linux cluster1'. Once the master 
has been initialized, the client can establish a connection to it*. The client can then perform 
preprocessing operations such as set-up of the grid, boundary conditions, chemistry, etc, to 
initialize the computations and engage in real-time visualization as data is being computed (see 
Figure 7). 

Shared memory parallelization (inside each server/node) is done by multi-threading (in C++ this 
would be done with OpenMP). Each "server" can compute several blocks (subsets of the 
computational domain), each block running in its own thread. The synchronization of all iterations 
and communications is the responsibility of the master node. Various locks and associated 
wait/notify methods determine when all of the servers have finished their computation and 
communication iterations and to cue them so that they may proceed with the next iteration. The 
master is also in charge of global data which is processed from local data from each block, such 
as the time step, or data that must be visualized. The client code provides a graphical user 
interface from which the code can be controlled and data can be viewed in real-time. The client 
can make requests to the master to grab data from the servers as it is being computed and 
display it in real-time with VisAD—a Java visualization API (freeware) built upon Java3D [35,36]. 

Figure 7: Snapshot of the evolution of a spherical explosion, computed with a second-order TVD 
method (ideal gas). Real time visualization using VisAD library. 

+ One should think of the "server" as a computational unit that provides a "service" (computations). There is a-priori no 
reason why the "server" cannot by itself further distribute the computational load to other service providers, although this 
recurrent (multi-level) parallelization has not been tested. 
* The master is a command and control center, responsible for gathering and distributing information to the servers and 
client, scheduling the tasks, providing critical I/O, and monitoring commands from the client. 
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Figure 8: Block communication using source and target patches. The dashed arrows 
represent referencing while the solid arrows signify remote method calls. 

The most crucial concern regarding communication overhead is the optimization of the intra- 
/inter-server communications. At every time-step, it is necessary for each block in the domain to 
share its information with one or more neighboring blocks. If two neighboring blocks are being 
computed on the same server, the communication can be handled by standard local method 
calls. However, if two neighboring blocks are computed on different servers, then inter-server 
communication is involved and it becomes necessary to use Java-RMI or other suitable message 
passing protocol. Figure 8 illustrates how two neighboring blocks communicate with each other. 
There are two types of patches which allow data transfer between two blocks. The first of these 
being the source patch is an array of objects which contain references to data available in the 
boundary layer of cells. The data references are depicted by the dashed arrows in Figure 8. The 
second is the target patch from which the ghost layer of cells receives its information. 

During block communication, there is a method call for each source/target patch pair in which the 
target patch is filled with the information from its neighboring block's source patch. The method 
calls are depicted by the solid arrows which can either be a local call if both blocks are on the 
same server or an RMI call if each block is on a separate server. The exchange of boundary 
condition information between servers is done without involving the master: this prevents a bottle- 
neck when scaling to a large number of processors. Figure 9 shows preliminary results of 
scalability tests of a fluid computation (CFD model) on a Linux cluster as function of the number 
of nodes (static domain decomposition). The overall parallelization efficiency is very good 
(systematically > 90%) for this test case, although the current measurements were limited by the 
number of processors available. 
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Figure 9: Preliminary scalability (CFD model) on Linux cluster. 
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5.3. Data Structures 

5.3.1.Geometry 

Ideally, the software should be grid-independent; this implies that one could at first decide to 
implement solvers based on structured grids, while reserving the ability to implement unstructured 
grids and their solvers at a later stage. All numerical approaches described above make use of a 
discretized space: besides the self-evident case of Computational Fluid Dynamics (CFD), PIC is a 
typical particle-mesh method, and DSMC needs a mesh to determine collision partners. Grids can 
be described with the following categories: (1) Structured (constant number of grid points in each 
direction), or (2) Unstructured (triangles, tetrahedra). The former also has the following sub- 
cases: (1-a) Cartesian (Ax, Ay, Az are constants); (1-b) Uniform (spacings are not constants); (1- 
c) Curvilinear, or "body-fitted" (not necessarily orthogonal). Structured grids can be described by 
multi-dimensional arrays of given dimensions (Q [ ] [ ] [ ]), i.e. any grid point can be addressed 
by a set of indices (i,j,k in 3D). In unstructured grids there is no such ordering, and the grid 
connectivity (i.e. how to access another point from the current one) requires a list of pointers 
between grid elements. Despite the apparent difference between the two descriptions, one can 
use the same approach in representing the grid data and connectivity. Thus, one can define an 
object geoNode to represent a grid point (a node in the mesh); each geoNode contains the 
coordinates of the point (in real or transformed space), as well as a list of pointers (addresses in 
the memory where the data is located, or integer indices that indicate a position in an array) to the 
neighboring points. The same goes for object of type "geoCeir, which describes the volume 
enclosed by the grid lines or grid surfaces. Thus one can walk through the connected list of nodes 
and cells to reach every point, whether the grid is structured or not. Of course, the structured 
case has the additional advantage that one could also directly address a given node or cell from 
the set of indices (i,j,k). However, instead of forcing the data to be stored in a structured form, it is 
just as easy to have a method that provides the memory location of a node/cell with those 
particular indices. Thus, the data structure (a one-dimensional list of objects) can remain the 
same to describe both structured and unstructured grids, while the additional methods 
"getNodelndex" and "getCelllndex" allow a mapping between the structured indices (i,j,k), 
arguments to the method, and the one-dimensional list. Such a mapping is of course void in the 
unstructured case. 

Figure 10: Schematic of geoCell object structure. 
Each geoCell is defined by a variable number of nodes, faces, with corresponding pointers to the 
attached geoNode and geoFace objects, and to the neighboring geoCells. The cell also includes 
variables such as center position, volume, and metric. 

Within this approach a "Mesh" object is defined as a list (or 1D array) of cells, nodes and 
surfaces, with pointers to connected objects (see Figure 10). If a structured solver is being used, 
one must address information on either side of a cell or surface by the pointers to the 
corresponding objects; for example in 2D, the variable on the left (u [i-1] [ j ]) is accessed as 
U [ncL], with ncL=pointer_21ef tcell (nc) . This procedure has two disadvantages with 
respect to a simple multi-dimensional data structure (e.g. u [ ] [ ]): (a) there is redundant 
information being stored in the Mesh object; however, the information is contained in a few 
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variables and does not constitute any significant penalty; (b) there is additional overhead in, for 
example, the method call "getCellndexr, which maps the one-dimensional index of the list of cells 
with the structured indices (i,j,k); however, one can easily construct algorithms such that this 
method call is relatively infrequent and the cost is minimal compared to the large number of 
operations involved in a flow or field solver, for example. The major advantage is that this 
approach allows the same data-structure to be used for any type of grid structure. The Mesh 
object can be sufficiently general that each cell has an arbitrary connectivity, while some 
variables used only for some types of grids may remain un-instantiated for others. For example, a 
structured grid may need a metric for some solvers; this metric may be computed and stored in 
that case, but is empty when the grid is unstructured. Similarly, some techniques of dynamic grid 
adaptation may be valid only for some types of grids (e.g. octree subdivision for Cartesian grids) 
and not on others. Each Mesh object is therefore flagged by a few Boolean variables (e.g. 
Cartesian / Curvilinear / Unstructured), so that one could match appropriate solvers and methods 
to the types of grids being used. Even if not all solvers are immediately implemented, future 
extensions are facilitated because the geometry infrastructure can support it. This is the approach 
used here: while the current focus is on developing solvers for structured, body-fitted grids, 
unstructured grid implementations will be facilitated in the future, using solvers and grid 
generators (which must provide the connectivity information) from external providers. 

Structured, body-fitted grids are efficient for CFD, especially when boundary layers are present; in 
that case, cells can be stretched to match the preferred direction of the gradients (normal to the 
body surface), while allowing efficient tri-diagonal implicit solvers and increasing the accuracy of 
dimensionally-split high-order schemes. This approach may also be efficient for plasma sheaths, 
since again the thermal, plasma composition and plasma potential gradients are aligned with the 
normal to the body surface. On the other hand, Cartesian grids are preferable for particle 
transport, the construction of simple high-order schemes (e.g. for the Maxwell equations), 
Fourier-transformed schemes, and dynamic cell adaptation. If the grid is Cartesian, it is extremely 
easy to keep track of the cell to which the particle belongs, given its position, e.g: i=x/Ax. This 
can be important for a large number of non-interacting particles, where transport (particle 
"pusher") is the major computational activity. However, this is true mostly for collision-less 
plasmas in simple geometries*. When the plasma is collisional, most of the computational cost is 
in the MCC procedure. In those cases, the additional cost in determining the relative particle 
position with respect to the cells (i.e. cell-indexing the particle) for non-Cartesian geometries 
becomes a negligible fraction. This extra-cost is typically a few arithmetic operations, and is 
roughly of the same order for body-fitted grids (using metric-transformed variables) and 
unstructured grids (computing relative distances), as long as the particle moves at most to 
neighboring cells. This last limitation is also not a restriction for collisional plasmas, since it is 
important for solution accuracy. One should point-out that the two approaches can be effectively 
combined, by using body-fitted grids near the body and in collisional regions, while Cartesian 
grids are used away from the body and in collisionless regions. The ability to handle any grid 
type, as described above, is essential to this optimization scenario. Therefore, there is no need to 
be restricted to Cartesian meshes, as most PIC solvers are. 

5.3.2.Fluid 

The data-structure for the fluid and plasma variables must also be highly flexible. The fluid can be 
described at various levels of non-equilibrium, corresponding to various relaxation time-scales. By 
assumption, the velocity distribution of the fluid-like plasma components remains Maxwellian, the 
collisional momentum exchange between particles of similar masses being the fastest relaxation 
process. However, electrons and ions may have different velocity distributions (i.e. different 
translational temperatures), and internal modes may not follow identical equilibrium distributions, 
or may significantly deviate from Boltzmann distributions. This hierarchy of non-equilibrium 
descriptions results in a variety of multi-temperature models. The hierarchy for atomic plasmas 

* When complex 3D shapes are involved, Cartesian cells must be "cut" near the boundary, yielding complex tetrahedral 
shapes. High accuracy near the boundaries becomes more difficult to achieve, and different solvers must be used. 
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would be single-temperature, two-temperature (Th -Te), three-temperature (Th -Te-Tx), and 

Collisional-Radiative (C-R) models, where Th is the translational temperature of heavy particles, 

Te is the temperature of the free electrons, and Tx is the temperature of the (assumed) 
Boltzmann distribution of electronic excited states. In the two-temperature model, the bound 
electronic states are assumed to be in a Boltzmann distribution at the temperature Te; this is 
usually valid in cases where the electron collisions dominate over atomic collisions. In low-density 
cases, when radiative rates are comparable to collisional or atomic quenching becomes 
significant, the electronic states cannot be described by a Boltzmann distribution; in this regime 
the C-R model is required. 

The ability to generate a variety of non-equilibrium descriptions is another important aspect of the 
code flexibility. One can determine from the input conditions which model is necessary, and also 
easily perform parametric studies to verify assumptions regarding the state of the plasma, or 
evaluate the importance of non-equilibrium effects. Furthermore, it is also desirable in some 
circumstances to adjust the level of description according to the local conditions. This would 
maximize efficiency, since higher levels of non-equilibrium imply higher computational costs. The 
software is currently being configured to allow different non-equilibrium fluid models in different 
regions; this feature is currently limited to static and pre-determined conditions, but it is 
theoretically feasible to extend this capability to automatic and time-dependent determination of 
the non-equilibrium model. This capability implies that boundary conditions between contiguous 
domains automatically transform the data between lower and higher-levels of thermodynamic 
description. Therefore, key methods to be implemented in the library for fluid modeling are for the 
contraction (from higher- to lower level) and expansion of information. An example of the former 
would be the grouping of all excited levels from a C-R model into a Boltzmann distribution and the 
forcing of equilibrium with the free electrons (from C-R to 2-T model); an example of the latter 
would be the generation of an additional variable for the electron energy from the single fluid 
equations (from 1-T to 2-T). Preliminary tests of these procedures have been performed 
successfully. Of course, the procedures are accurate as long as the conditions permit it, i.e. are 
such that the higher level of description (e.g. 2-T model) is compatible with local thermodynamic 
equilibrium (LTE) for the mode being expanded or contracted (Te ~Th). This approach yields 
maximal benefits when the high level of thermodynamic description is very expensive to maintain 
in near-equilibrium conditions; this would be the case of the C-R model, for example, since it 
requires a solver for the master equations of collisional and radiative excitation and de-excitation, 
and mass conservation equations for all levels. Similar benefits could be found for molecular 
plasmas. Note also that a similar procedure applied to translational modes (i.e. velocity DF) would 
allow the transition between CFD in dense fluid regions and DSMC in transitional or rarefied 
regions. 

Finally, one should also point out that atomic electronic states are too numerous to be treated 
independently inside a C-R model; the usual procedure consists of grouping together electronic 
states which are close together in the energy spectrum. 

5.3.3.Particles 

Particles usually have a very simple structure: they must contain a minimum of information, since 
accurate simulations requiring 106-107 particles or more would consume an inordinate amount of 
memory if each particle object contained an excessive amount of data. The minimum information 
is: (a) a particle type identifier (this can be the species number); (b) particle coordinates (x,y,z); 
(c) particle velocity (vx,vy,vz). The rest, i.e. charge, mass, etc, can be obtained from the species 
information. Additional information may include: (d) particle statistical weight; (e) cell number to 
which the particle belongs,  but also; (f) transformed local coordinates  (4,TJ,£)   which are 
especially useful for monitoring whether a particle crosses into an adjacent cell in body-fitted 
grids, and; (g) time scale - this has been explained further in Section 5.1. The statistical weight 
(each simulated particle is a "pseudo-particle" and represents a large number m of real particles) 
could be made species-dependent only, in which case it would not need to be included as item 
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(d) in the particle data-structure, but there are several reasons why this may be beneficial: (1) 
when particles are injected from time-dependent boundary conditions (e.g. electrons from 
cathodes) a higher accuracy could be obtained by varying the statistical weight in addition to, or 
instead of, varying the number of pseudo-particles; (2) chemical reactions can be more accurately 
computed using variable statistical weights; (3) higher statistical accuracy can be achieved when 
the particle density varies by several orders of magnitude across the computational domain, by 
duplicating particles that move into low-density regions. These issues are common to DSMC 
simulations, where the use of variable statistical weights is very frequent [2]. 

Since some of these quasi-particles may describe gas species with internal structure (electronic, 
vibrational and rotational states), there may also be some information required to describe these 
modes. Ideally, to each particle would be associated a unique state; however, to accurately (i.e. 
with low statistical noise) describe the complete DF, one would require an extraordinarily large 
number of particles. One must instead attribute a distribution of internal states, e.g. a simulated 
molecule could have its own rotational temperature, indicating how these modes are populated. 
During a collisional energy exchange, one can compute and modify the overall internal energy 
associated with that mode, and assign again a temperature. The disadvantage of this approach is 
that one potentially neglects correlations between internal and translational modes. For example, 
if situations occur where most of the excited states (indicated by a quantum number I) are 
associated with particles moving at high-velocity in the z-direction, the statistical correlation 
(f|yz) can be high when both £ and vz are high, and this effect would not be reproduced if 

internal energy distributions are stored for each particle. Such situations can occur in special 
cases (beam interactions) and although molecular plasmas are not currently being considered, it 
is prudent to design the software with both potential approaches in mind; the data-structure can 
simply have un-instantiated arrays of levels or distribution parameters, which can be used for 
whichever model becomes implemented. 

This approach also could be extended to the velocity distribution, i.e. the particle data includes 
also a velocity distribution. This approach is particularly interesting when dealing with the problem 
of particle coalescence, to be described later. 

5.4. GPU programming 

Within the course of the lab-task we have acquired workstations with GPU cards from NVIDIA; 
one workstation with 2 Tesla C870, and another one with 2 Tesla C1060 cards. The C870 was 
another model which allows floating-point operations only, but is sufficient for preliminary 
development and testing purposes. Both cards support some version of CUDA [37], the C-like 
language from NVIDIA for GPU programming. The technology evolves very fast and at the time of 
this writing, a newer technology yet has been developed, the Tesla "Fermi" card (C2050/C2070) 
which allows C++ programming. Further testing of the Fermi card will be done in the next 2 years. 
Various algorithms were tested on the GPU. First, we implemented a generic particle transport 
and Monte-Carlo collision algorithm; the particle transport is extremely simple and involved only a 
few floating-point operations; the collision algorithm selected pairs of particles in each cell and 
collided them elastically with a 50% probability. We found that the GPU was slightly slower than 
the CPU (Quad-core Xeon) if only the move algorithm was performed. When the collision 
algorithm was added, the GPU was faster by a factor of about 4*. Considering that the MC 
algorithm is stochastic and that the threads must be synchronized, this result is quite good. These 
results include the time required to transfer data between the CPU and GPU. The reason the 
move+collide algorithm was so much more efficient presumably lies in the fact that many more 
operations are needed to compute the post-collision velocities. To test this idea further, we 
implemented a generic "workload" for each particle, by computing a cosine function a certain 
number of times. The speed-up was very clear: Figure 11 shows the speed-up compared to the 
CPU, as function of the number of cosine function calls. This acceleration factor was computed 

* Up to 16 million particles were tested; the number of particles in each cell was varied but the results were not 
significantly affected. 
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for several cases of the total number of particles/threads and found to be almost independent of 
the number of threads (above 1 million). We conclude that the optimal approach to using the GPU 
is to maximize the amount of independent work; thus the GPU may not be profitable for problems 
with simple physics, but may allow rapid computation of much more challenging problems. An 
obvious application, for example, would be an exact relativistic particle pusher which involves 
many more flops than the standard, approximate Boris algorithm [38]. The complex system of 
collisions between particles and fluid in a collisional-radiative kinetics model should also greatly 
benefit from GPU technology. These will be investigated in the near future. 

Figure 11: Speed-up factor versus number of cosine operations for each particle/thread 

For fluid modeling, we investigated what seemed to be the easiest parallelization task with the 
greatest benefits, i.e. implementation of the chemical kinetics on the GPU. Since most of the cost 
is found in the solution of a linear algebra problem for the point-implicit kinetics, the focus was on 
developing an efficient version of a Gaussian elimination/back-substitution algorithm on the GPU. 
The problem is divided into 2 scales: the number of "species" Ns at each cell, and the number of 
cells Nc. The linear algebra problem consists of solving A • x = b for x, a vector of length Ns. The 
number of operations scales as Mf, so one can easily obtain a large workload for each 
cell/thread. However, a naive implementation of the algorithm led to poor performance (speed-up 
< 1). It turns out that a critical factor here is the size of the problem. At each cell, the matrix A of 
size Ns x Ns is too large for the small cache memory of the GPU, and data must constantly be 
transferred between the ALU and the global memory (RAM) on the GPU; this can create 
bottlenecks and increase the operation count very easily. We were able to obtain a speed-up of 
about 8 (for Ns = 128) by careful choice of memory stride. Later, the speed-up was increased to 
about 11 by using the limited shared memory available on the GPU device. This is still a 
significant acceleration, but less than we originally expected. There are several approaches to 
further improving this situation, such as using iterative solvers, or multi-scale schemes which 
would reduce the problem size and complete unrolling of the algorithm. Furthermore, the 
computation of the source terms (reaction rates) and jacobian matrix A is also intensive and when 
ported to the GPU can lead to significant speed-up. All of these approaches are currently being 
investigated. 

6.   Computational Fluid Dynamics 

6.1. Formulation 

The simplest models for the convection of the plasma fluid variables are finite-volume based; in 
this approach, the fluxes are evaluated at the cell interfaces and Gauss law is used to compute 
the changes in the cell-averaged variables. This so-called conservative form can be written as: 
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dt 
(2) 

with Q the array of conserved variables, Fthe array of convective fluxes and Q the array of local 
source and exchange terms. For convection processes only (i.e. the Euler equations) and 
ignoring the source terms due to collisional exchanges of mass (chemistry) and energy 
(relaxation), we have: 
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The total energy E of the plasma includes a purely thermal component E and the kinetic energy. 

E- -E+Y2(M
2 , The pressure tensor can be defined as the sum of two contributions: 

raß = PSaß+Puauß (4) 

For a two-temperature plasma [5], there are two contributions to the pressure and to the plasma 
internal energy, i.e. P = Ph +Pe, with (ye=5/3): Ph = (yh-l)Eh ; Pe={ye-l)Ee. This implies 
that a jump in pressure across a cell interface can be expressed by: 

AP = (yh- 1)(AE-AEK -AEe ) + (ye- l)AEe , (5) 

where: 

AE K 
u2                         u2 

u- A\pu) Ap = pu • Aü + A/7. (6) 

The linearization AF = AoAQ forms the basis of numerical schemes based on approximate 
Riemann solvers [39] (Godunov schemes [40]). Note that equation (2) contains a source term on 
the Right Hand Side (RHS) for the electron energy equation - a consequence of the one-fluid 
approximation - that is responsible for the adiabaticity of the electron gas component. Notably, 
since the electron gas is always subsonic, there is no shock heating of the electrons across a 
viscous shock, where there can be a considerable jump in ion temperature [41]. The complete 
equation for the electron energy, combined with the conservation of mass for the electrons, leads 

to: T~1(DtTe) = (2/3)n~1(Dtne), with Dt=dt+u-V the covariant derivative. Therefore the 
electron heating (cooling) obtained as a result of compression (expansion) is always adiabatic: 
log(Te) = (ye -l)log(«c). A modified formulation using an entropy-like variable [42] leads to a 
simpler and more accurate treatment. We defined 
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The convection of this quantity yields: 

P 
St P- 

P' 

+v 
P7' 

-(Ye l)p'-^ [dtEe +V(uEe)]+(l-ye)^-[-pV-ü] 

(7) 

(8) 
P 

Using the equation for the electron thermal energy dtEe +V•\uEe)=-pe^7-ü), we can easily 
verify that the modified electron entropy satisfies a simple conservation equation, i.e.: 

dtSe+V(ÜSe) = 0 (9) 
The use of the entropy variable may be convenient for the convective processes, but not for 
electron heat conduction and inelastic energy exchanges. The latter make it more appropriate to 

f pe was used in the original formulation [42], in which case se was the true electron entropy, but the 

advantage here is that the variables in (6-5) remain finite when the ionization fraction goes to zero (pe -> 0). 
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retain the electron thermal energy as the conserved variable. However, the operator-splitting 
approach allows us to compute the convective processes differently. Thus, the change in the 
modified entropy variable can be written as: 

i(«+i) •f(B) SS„ •.(!») A; 

AV surfaces 

(10) 
TVD 

Where the term in brackets is the change due to convection (using for a example a TVD scheme 
[43]). A corresponding change in electron thermal energy due to convection can be computed: 

5E„ p(n)+Sp 
Ve-l   S^+SS, 

Ye 
p (I.) Ve-1   S, (») 

Ye -1 
(11) 

where Sp,SSeare the results of convection only. This overall approach is quite accurate; the 

relative errors for the same cases of shock and rarefaction waves are of the order of 10~3 for a 
shock and 3x10"5 across a rarefaction. 
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Figure 12: Temperature profiles behind strong shock with relaxation and electron heat conduction 

The other approach consists of using Se as the fundamental conserved variable and expressing 
all other terms (fluxes, jacobian, EOS) as function of this variable. This is the approach taken in 
the course of this lab-task, and described in detail in Appendix E (thesis). Figure 12 shows an 
example of a test of the multi-temperature model, including relaxation effects and precursor heat 
conduction, which have also been implemented. 

The 2T formulation described above has been extended to the ideal MHD equations; since the 
magnetic field can perform rotations of the plasma velocity, it is always necessary in the MHD 
system to consider the 3 components of the velocity, as well as 3 components of the magnetic 
field, even if the simulations are performed on 1D or 2D grids. The main difficulties with the MHD 

system are related to the divergence-free property of the magnetic field, i.e. V-B = 0, one of 
Maxwell equations. This reduces the number of independent variables in the system (and the 
number of eigenvalues), making the system non-homogeneous. Various numerical approaches 
have been used to guarantee the divergence-free property in ideal MHD simulations, e.g. a 
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corrective step [44], adding an equation for the divergence itself (Powell's method [45]), or 
constraining the fluxes to guarantee this property (the constrained transport approach [46]). 

The fluid component can have various levels of non-equilibrium, depending on the relaxation 
time-scales. A hierarchy of descriptions ensues, for example: single-temperature (1T), two- 

temperature (Th —Te), three-temperature (Th -Te -Tx), and Collisional-Radiative (CR) models. 

We have previously developed these versions, and the current focus is on a more detailed CR 
model. We have also experimented with code design to allow a seamless transition between 
these various levels of description. This would allow us to adjust the complexity of the code 
according to local conditions, e.g. starting from a 1T model in a very dense (equilibrium) region, to 
multi-T then to a CR model as the density is lowered. The chosen procedure was to devise 
methods for contraction (from higher- to lower level) and expansion of thermodynamic information 
at the boundary between domains. An example of the former would be the grouping of all excited 
levels from a C-R model into a Boltzmann distribution and the forcing of equilibrium with the free 
electrons (from C-R to 2-T model); an example of the latter would be the generation of an 
additional variable for the electron energy from the single fluid equations (from 1-T to 2-T). 
Preliminary tests of these procedures have been performed successfully, but have not yet been 
implemented on a final version of the code. 

6.2. Numerical Scheme 

We have implemented and tested a variety of Godunov schemes for the Euler equations, with 
variable order of accuracy, starting from a 2nd-order TVD method [43], to 5th-order WENO 
schemes [47]. Various limiters have also been investigated, and these variations have been 
compared on well-known, published test cases. When used in conjunction with the HLLE 
Godunov-type flux as the building block, the WENO scheme has proven to be very robust for 
numerous conditions. The WENO schemes require Runge-Kutta time discretization for time- 
accurate solutions, which has led to the implementation of second- and third-order versions in 
temporal accuracy. The 2nd-order time discretization requires two-thirds as many computations 
without significantly reducing the stability limits. After all tests were performed, the selection was 
made to use a 3rd-order variant of the MP scheme of Huynh [55], which showed the best 
combination of accuracy and stability, and an Adams-Bashford time-stepping algorithm, which 
provided some memory savings compared to a Runge-Kutta approach. 

A first example of such a numerical test is shown in Figure 13 (the Emery wind tunnel problem 
[48], consisting of a Mach 3 flow and a step); by comparison, the results of another state of the art 
numerical scheme are shown in Figure 14. Interestingly, the current results are more accurate 
(for same grid resolution) than the AMROC code [49], and more accurate than the PPM scheme 
used in the FLASH code [50] from the University of Chicago (not shown), used in astrophysics 
calculations. 
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Figure 13: Results of Euler calculations on standard test case (forward step); multi-block, parallel 
computation (thin horizontal and vertical lines are block boundaries) 
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Figure 14: Results of AMROC code, using grid adaptation; finest resolution is equivalent to 3 times 
the resolution of current results shown in Figure 13, yet the KH instability is less resolved. 

Figure 15: Standard CFD tests: (left) 
Orszag-Tang MHD vortex problem; (right) 
Rayleigh-Taylor instability. 
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The MHD version of the code was also tested against the Brio and Wu problem [51] and the 
Orszag-Tang MHD vortex [52], both of which are standard benchmarks in the MHD fluid 
community; the latter is shown in Figure 15-left. On the right of the same figure is a standard 
Rayleigh-Taylor instability test computed on a 400x1600 grid; the resolution of the contact surface 
is maintained very well throughout the simulation. In Figure 16 we show a comparison of the 
computational - left side - and experimental - right side - results of a shock diffraction around a 
wedge, the so-called Schardin's problem [53]. The grid-like structure on the left indicates the 
boundaries of computational domains. 

Figure 16: Shock diffraction around a wedge: left-simulated Schlieren, right-experiment 

Finally, we show in Figure 17 a similar comparison for a problem of shock diffraction down a step. 
Other standard test cases included the Shu-Osher shock-entropy wave interaction problem [54] 
and the Woodward-Colella blast wave problem [48]: these can be found in the PhD thesis of Dr. 
M. Kapper, provided in Appendix E. Clearly the basic method is capable of very good accuracy, 
and we found the 3rd-order MP method (MP3) arguably superior to even higher-order schemes 
like the popular 5th-order WENO. While further refinements of the basic method could be obtained 
with further research, there is a point of diminishing return on the investment in time and effort, 
i.e. higher-order accuracy and improved stability can always be implemented at a later stage. The 
present scheme is considered sufficiently accurate and fast for the present purposes. Thus, the 
next steps consist of implementing the physical models for non-equilibrium dynamics, i.e. a 
Collisional-Radiative model. Note however that this basic scheme provides a single-fluid solution, 
with or without plasma effects. The next section discusses an early investigation whereby the 
description is being extended to multiple fluids. 

6.3. Multi-Fluid 

As an alternative to a PIC model for the energetic electrons, one can envision separating the 
electrons from the rest of the plasma while keeping a continuum model. This is the basis of the 
multi-fluid model; it assumes that the electrons are sufficiently collisional within themselves to 
maintain a distribution function that is close to a Maxwellian, drifting at a mean velocity governed 
by both inertial and electrostatic effects. The main advantage is that computations can be much 
faster than with a PIC model, while still being able to account for space-charge effects. The 
disadvantage is that the time scale is governed by a combination of the mean electron velocity 
and the speed of sound in the electron gas. Therefore, for this approach to be useful, an implicit 
fluid solver must be devised for the electrons, coupled to the electric field. A first attempt at 
devising such a scheme was made. Two versions of the scheme have been designed; one which 
entails the inversion of 7x7 matrices, and is linear-order in the time step St; a second version that 
uses 4x4 matrices, but is a second-order expansion, i.e. includes terms proportional to (St)2. 
Both algorithms were implemented and tested, and are described in more detail in Appendix A. 
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Figure 17: Shock diffraction down a step: left - simulated Schlieren, right - experiment 

To verify the algorithm, we used a simple test case consisting of a one-dimensional plasma with 
reflecting boundaries ("plasma in a box"); the initial state was a fully ionized, non-reacting plasma 
with all the electrons moved to the left half of the box. This generated a large internal electric field 
which accelerated the electrons towards the right side. Without dissipation, the electron motion 
leads to an oscillatory behavior, as the electrons accumulate on the right side, create a restoring 
field that accelerates back the other way, and so on. This test case is similar to the one studied in 
[76] but with a much more severe initial condition, since in [76] there is only a slight perturbation 
of the space charge. The plasma oscillations in our case have much larger amplitudes, and non- 
linear effects (steepening of the profiles) can be detected; nevertheless, Figure 18 shows an 
excellent agreement with theory, and negligible dispersive errors. The stability of the algorithms is 
also severely tested. Indeed, it was found that the 7x7 algorithm would occasionally fail when the 
time step was too large compared to the plasma frequency or the Courant condition (|u| + c)St < 
Ax. The second-order expansion scheme provided greater stability, and strongly damped the 
oscillations when the time step was such that (|u| + c)St > Ax and copeSt » 1. However, there is 
some residual damping for time steps just below the Courant condition, which is not yet 
understood. Development of this scheme is continuing, and will also include effects of a magnetic 
field. 
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Figure 18: Plasma oscillations (electron velocity at center of 1D box) for both explicit and implicit 
schemes 

A multi-fluid model also involves the presence of coupling terms on the right-hand-side. The 
scheme described in Appendix A is actually a reduced version of the complete set; it involves the 
strong coupling between electron fluid motion and electrostatic field from charge separation. This 
fast scale motion involves two equations for the electron density and velocity; the energy 
(temperature) is constant. 

The use of a multi-fluid model involves collisional interactions between the fluids; averaging over 
the Boltzmann equations, we can write for each fluid component a a set of Euler equations: 

dt 
na + V(naua) = 0 (12a) 

jt{manav}a) + W(P«; + manav}au
}

a) = Zaena(E + uxB)1 + ZßKß (12b) 

^E„ + V'{(Eaff" + ?Hya + qJ
a} = ZaenauJ

aEi + Zß(Qaß + uJ
aR

J
aß) (12c) 

Where summation over repeated indices is implied (Einstein notation), and i,j are geometrical 
indices;  Ea = -naTa + -manaul   is the total energy of the plasma component. These equations 

are the conservative form1^ of the well-known Braginskii equations [56]. The Raß is the resistance 
force and Qaß is the energy exchange term, for both of which Braginskii provides approximate 
forms. Ignoring the thermal resistance effect [56], the friction force between two components a,ß 
is: 

Raß = manavaß(uß - ua) (13) 
while the energy exchange term: 

Here, vaß and v„ß are the collision frequencies for momentum exchange and energy exchange 
respectively, which obey the symmetry properties: 

Here we use the notation of Decoster [57], where Qaß is the QA of Braginskii. 
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manavaß = mßnßVßa (15) 
and 

navlß=nßvfa (16) 

For energy exchange and small velocity differences: 

vl  =^H^V (17) 
"P       ma+m.ß   "p v      ' 

Note that vaa is not a symmetric quantity. 

It must be emphasized here that these formulations are obtained strictly for elastic collisions; this 
is clearly seen in equation (6-1 Oa) which does not involve any exchange of mass between the 
components (ionization/recombination). To go beyond fully-ionized plasma conditions (commonly 
found in fusion or astrophysical applications, for which the multi-fluid equations have been 
developed) we must also include the inelastic collision terms, which generate additional source 
terms in the fluid equations, for all three quantities: mass, momentum and energy. Consider for 
example ionization by electron impact. There is a corresponding source term for the number 
density re, and there is obviously an energy loss; since the conservation equation of the electron 
fluid applies to the total energy, i.e. kinetic and thermal, the energy loss rate is: ree*, where e* is 
the ionization threshold. However, this does not provide sufficient information to distinguish 
between the loss of mean kinetic energy and thermal energy. If we write again the momentum 
exchange rate due to inelastic collisions as a frictional force, i.e. ?re(un - ue)where un,ue are the 
neutral and electron fluid velocities and ? is a constant. Therefore, we have: 

$ = re (18a) 

— (neue) = -c,Teue (18b) 

jt(^nekTe + ^meneufj =-Tee* (18c) 

where we have neglected unto simplify the notation. The system (18) yields two different 
solutions for the rate of loss of kinetic energy in the limit kTe « meue/2: 

»4(f) —a+*** <19a) 

"4(f) = -^*+»'/2>i? <19b> 
Obviously, these cannot be both satisfied for any value of kinetic energy. Thus, the source terms 
of (6-16) are inconsistent. This is not all too surprising, since the microscopic collision process 
between two particles can yield complex dependences when the two particles in question belong 
to different statistical distributions which are not in equilibrium. To obtain a self-consistent model 
of the coupling terms in a multi-fluid description due to inelastic collisions, it is necessary to 
evaluate these terms from first principles, i.e. starting from the microscopic level and averaging 
over the respective distribution functions of each component. We can start from a detailed model 
of the inelastic collisions, using multiply-differentiated cross-sections, and integrate over a known 
distribution (here Maxwellian) to obtain the rates (see Figure 19). Figure 20 shows the same 
results for a drifting Maxwellian, in which case both relative mean velocity (kinetic energy - KE) 
and thermal velocity (temperature) can contribute. This is especially important for multi-fluid 
models, for which the relative velocity can be large. From the detailed cross-section information, 
one can also compute additional moments of the collision operator, such as momentum and 
energy transferred, to derive effective friction and energy exchange terms, i.e. the equivalent to 
the terms of the Bragiinski equations for inelastic collisions and unrestricted velocity differences. 
A description of the approach developed so far is given in Appendix C. We have developed and 
tested the procedure for the forward rates and need to do the same for the reverse reactions. 
This work is currently on-going and we expect it to be completed by end of CY 2010. 
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Figure 19: Compiled multi-stage ionization rates for assumed Maxwellian distribution 
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Figure 20: Compiled ionization rates for assumed drifting Maxwellian distribution 
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7.   Collisional-Radiative Modeling 

Starting from the multi-species 2T and MHD equations (see Section 6.1), it is straightforward to 
consider species as individual electronic states. For a molecular plasma, this requires that we 
modify the EOS and thermodynamic database to have a separate specific heat and internal 
energy for each of these electronic states (the internal energy being a combination of vibrational 
and rotational states). We currently restrict ourselves to atomic plasma only, in which case the 
EOS becomes very simple (the adiabatic index is a constant, y = 5/3). The main difficulties in the 
CR fluid model are in generating the database of state properties and reaction rates (or cross- 
sections), and the management of the complexity of the internal states. Theoretically, there is an 
infinite number of bound electronic states and obviously one must limit that number to a practical 
value. The truncation of the series is currently done on a fixed basis, which is the common 
practice in CR models; in other words, we consider a fixed number of states starting from the 
ground level. The argument is that the upper states lying very close to the ionization limit are very 
thinly populated or eliminated altogether, due to the effective lowering of the ionization potential 
by the ambient micro-field and non-ideal effects (highly excited states, or Rydberg states, have a 
radius that becomes comparable to the average inter-atomic spacing). There is more work that 
could be done to treat this truncation issue more accurately, including dynamic truncation, i.e. 
depending on the actual plasma conditions; this is an issue that may be investigated at a later 
stage. The second way to resolve the problem of the very large number of states is "grouping", 
i.e. to combined individual states into a new one with average properties (energy, decay rate); 
this is implicitly done anyway, since the levels obtained from a typical database are degenerate 
levels with respect to spin and orbital quantum numbers; this degeneracy is lifted, for example, 
when strong fields are applied (Stark and Zeeman effects. Grouping levels at a coarser levels 
makes sense for levels close together in energy and with similar radiative decay rates. The 
optimal way to perform this grouping remains an issue that deserves more attention, along with a 
more complete and practical database for species and physical conditions of interest. 

h 

In 

Y///Ar///////////,   continuum 

n=l 

n=0 

Figure 21: Schematic of atomic levels 

Consider then a simplified set of atomic levels; the populations (normalized number densities) of 
all states form a discrete phase space, the Atomic State Distribution Function (ASDF). The 
evolution of this ASDF is obtained by summation of all collisional and radiative transitions, 
yielding an ODE of the form: 

dn 

alt - — Zij<k[Ckj nenj      Cjk nenk      Rjkj + Lh2lj>k{Ckj nenj      Cjk nenk + ^kjj 

Y,j<k\Ckj nhnj ~ Cjk nhnkj + Hh T1j>k{Ckj nhnj ~ Cjk nhnkJ 

~Ck
lnenk + Ck

rnent — Y.h Ck
lnhnk + Y.h Ck

rnenhnt + Rknent 

(20) 

The collisional rates in (20 are indicated as Cfk , where a = e, h is the collisional partner 
responsible for the transition (electron-impact or heavy particle impact) and T = x,d,i,r indicates 

29 



the type of event, respectively excitation, deexcitation, ionization and recombination. There can 
be several types of heavy particles present, so the index h must be summed (including neutral 
atoms and ions). The radiative rates are present for line emission and radiative capture; there are 
no rates of photo-ionization or line absorption, which would depend on the radiation energy 
density, wnd would include some model of radiation transport. Instead, we use an effective rate 
for the line emission, corrected by an escape probability factor A, i.e.: 

R]k = (1 - Ajk)A jkj^jk (21) 

Where Ajk is the average Einstein coefficient of spontaneous emission. Complex models can be 
used to evaluate the escape probability, but we use here a simplified model, i.e. Ajk = 0,1; in the 
the former case the plasma is transparent, in the latter case the radiation is completely self- 
absorbed. In the validation case studied (ionizing shock wave in Argon), the density gradients are 
not sufficiently large that a complex model [58,59] must be used, or that the radiation transport 
(RT) equation must be solved; instead, we find from calculation of the radiation mean-free paths 
that the transitions to the ground state are self-absorbed, while the plasma is completely 
transparent to transitions to any other state. 

We focused the development of the CR model on the case of an Argon plasma; the reasons were 
two-fold: (a) the Argon system is well-known, yet complex enough to provide a good benchmark 
of a CR model; (b) there are multiple experiments in Argon with spectroscopic data which can be 
used for validation. We chose a set of experimental tests of ionizing shock waves in Argon to 
validate the model. This was also the objective of a prior study [7], limited to 1D simulations; with 
the advances in computational power, we demonstrated that this type of problem can now be 
simulated in 2D with modest computational power (32 node Linux cluster), indicating that even 3D 
problems could be handled by the current large-scale resources. 

Table 1: List of atomic levels (energy, degeneracy, and quantum numbers) for Argon 

i E(i) [aV] ffi jc n![K\j i B{i) [e\] 9t jc nt[K]j 

1 0 1 1.5 [MfijV 18 13.903 5 1.5 M[3/2Ia 
2 11.548 5 I.-"; I - ,\ 2, IS 13.979 9 1 r- 3*^/2].. 
:) 11.624 3 1.5 • i, :j 2 , o,:i 14.013 7 1 r. 3d[7/2]3 

4 11.723 ] 0.5 J ••- I    2 ; 21 14.063 5 1 r. 3d[5/2]a 

5 11.823 3 0.5 is' ]    2  | 22 14.06S 5 1 T- 3d[3/2]i 
6 12.907 3 1.5 •I.'- i 2;, 23 14.090 .; 1 r. 5*{3/2]a 
7 13.076 7 !.- ly- 5 2 t 24 14.099 7 1.5 5s[5/2)3 

v 13.095 5 !..-. 4P - 2", •y- 14.153 3 1.5 343/2], 
9 13.153 3 1.."; ].•• •l -, .!!. 14.214 5 0.5 5J'[1/2JO 
Hi 13.172 5 1..", I:. •• 2. 27 14.234 5 05 &T5     2-: 
II 13.273 1 ]..-, J;'. 1  2', i> 14.236 7 05 5S'[l/2]! 
12 13.283 3 0.5 4j/[3/2]j 21i 14.241 L 0.5 M'  3    2-: 
13 13.302 5 0.5 4j/[3/2]a :J(i 14.255 3 0.5 3dT5 2, 
1-1 13.328 3 0.5 V[l/2]i 31 14.304 3 0.5 3rf'3/2 | 
LE 13.480 1 0.5 4J/[l/2]„ oa 15.760 4 1.5 [Ms]3p5 

Hi 13.845 1 1.5 3d 1/2 i oaf 15.937 2 0.5 [Mg]3P
5 

17 13.864 3 1.5 :W 1/2 i 

The basic numerical methods and formulation developed for the Argon test cases are equally 
valid for any other atomic plasma and once the database for say, Xenon, is compiled one can 
readily apply the model to that problem as well. In fact, there are similar experimental studies of 
ionizing shocks and MHD shocks in Xenon which could be investigated in the future. We chose a 
final set of 31 levels to describe the ASDF in Argon (see Table 1). Note that the levels are 

decomposed into 2 sub-sets according to the value of the total spin of the core: jc = {-,-}• 

Although the energy levels of the respective sets can be very close, transitions between levels of 
different jc are generally forbidden, and one must account for this restriction appropriately by 
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considering the two sub-groups. It also means that there are two ionization potentials, and 
equivalently, two ground-states for the ionv4r+. Mode details of the CR model and its validation 
are given in the PhD thesis by M. Kapper, provided in Attachment A. 

The system (20) is augmented by equations for the electron energy and heavy particle 
translational energy, to account for the energy exchanged during inelastic collisions; in the single- 
fluid model, these terms can be easily derived and no source term is required for momentum 
exchange, as opposed to the multi-fluid case. In addition to the inelastic collisions listed in (20), 
one can also include other reactions involving Ar£, or dielectronic recombination (inverse Auger 
process); the former was added to the model and showed little influence in our test case, but may 
contribute in other plasma discharges. The latter may be relevant in low-density, high- 
temperature plasma. The most uncertain aspect of the CR model concerns the cross-sections for 
excitation and ionization; data is poor or non-existent for collisions involving excited states and 
one relies on simplified models of collision physics - such as the Binary Encounter/Bethe (BEB) 
and its variants [60-61] - or quantum (R-matrix) calculations when feasible. These can provide a 
good estimate of the cross-sections, but valid only for electron-impact. Atomic collisions such as 
Ar + Ar -»Ar* + Ar can be important, yet the cross-sections are not well-known; standard 
models (see [62]) have been used in the community, yet more precise calculations would be very 
beneficial, especially for the type of weakly ionized plasma found in aerospace applications*. We 
will see that in the chosen test case of ionizing shock, the heavy-particle impact is important 
immediately behind the shock, since the electron density is still very low; these rates are therefore 
mostly responsible for the shock structure, i.e. the "induction" zone separating the shock and a 
region where rapid ionization occurs ("avalanche") and the electron-impact processes take-over. 
This type of experiment can be very useful in calibrating the heavy-particle impact inelastic cross- 
sections, through parametric studies. 
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Figure 22: Effect of upper levels on radiative cooling region; complete agreement with experimental 
data requires at least the 4s,4p,3d and 5s manifolds 

In addition to the cross-sections, one must also consider a minimum number of levels; this can be 
clearly seen in Figure 22 which shows different profiles of the ionization fraction in the relaxation 
region ("radiative cooling"), past the peak ionization. In that figure, the flow goes from left to right 
and the shock is at x=0. The profiles are computed with a steady-state, space-marching scheme 
in the rest frame of the shock. The fluctuating curve is the experimental data, while the smooth 
profiles are the computed solutions, for several cases of sets of atomic levels. Thus, if only the 4s 
states are considered, the solution is significantly in error. Adding the 4p levels improves the 
accuracy, but one needs at least the levels up to 5s to reproduce the correct rate of 
recombination. The collisional exchange between upper states is also important; for example, 

At significant (>10") ionization fractions, the electron-impact processes completely dominate the kinetics. 
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Figure 23 shows the temperature profiles of heavy particle (Th), electron (Te), and bound states* 
4s and 4p, when no inelastic collisions between these two sets are included. One can clearly see 
a separation between the two behind the shock. In Figure 24, the excitation and deexcitation 
processes between levels of these two sets are included, and the two manifolds clearly come into 
fast equilibrium with respect to each other. Note, however, that the temperature of the excited 
states is not the same as that of the free electrons. The latter is also changed when the inter- 
manifold collisions are included (red curve). 
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Figure 23: Temperature profiles without collisional interchange between manifolds 4s and 4p 
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Figure 24: Temperature profiles with collisional interchange between manifolds 4s and 4p 

The "temperature" of an excited level is obtained as the equivalent temperature which would satisfy a Boltzmann 
equilibrium relation with respect to the ground state. 
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Figure 25: Steady-state profiles for complete set of reactions and complete set of levels 

Figure 26: Unsteady 1D profiles in shock rest frame - cyclical motion 
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The final steady-state profiles are shown in Figure 25 and compared with the data from the 
ionizing shock wave data in [63]; the comparison is for the case of an initial Mach number 15.9 
(similar agreement is found for other cases of Mach number, except for the lowest Ma=13.6 case, 
for which boundary effects become important and are not considered here). However, the flow is 
not steady-state; this can be clearly seen in Figure 26, which shows a sequence of profiles in the 
rest-frame of the shock, obtained from a time-accurate 1D simulation. From a) to b) a pressure 
wave develops, which propagates towards the shock front; in c) the wave is reflected as an 
entropy wave (contact) propagating back towards the avalanche region. The higher temperature 
associated with the entropy wave triggers in d) a new position for the electron avalanche. The 
new position of the peak generates a new pressure wave and the sequence repeats itself. Figure 
27 shows the x-t diagram of the pressure: the shock moves from right to left and is the leftmost 
trace; the avalanche is seen as the secondary trace also moving right to left (the right boundary is 
a reflecting wall and the free stream is from the left). One can also see the pressure waves 
generated at the avalanche and catching up with the shock, while a simultaneous wave 
propagates in the other direction (and is eventually reflected at the wall). Figure 28 shows the x-t 
diagram of the total density; the same pressure waves can be seen but this time the contact wave 
reflected at the shock and propagating back to the right can be clearly observed; this difference 
confirms the identification of this wave as an entropy/contact wave. 

Figure 27: X-t diagram of pressure (Ma=14.7 case); shock originates from right 
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Figure 28: X-t diagram of density (Ma=14.7 case); shock originates from right 
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Figure 29: History of shock Mach number versus distance (top) and induction length versus time 
(bottom). 
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The periodicity of the dynamics inside the induction zone can be seen by monitoring key global 
parameters, such as instantaneous shock Mach number and induction length - the distance 
between shock front and avalanche region; the latter is defined as the location of the first peak 
ionization fraction. Both quantities are shown in Figure 29 for the Ma=15.9 case (dashed line in 
top figure); the experimental value of the induction length is 2 cm (dashed line in bottom figure). 
Note that a better agreement could be obtained with a better definition of the induction length 
(distance to the region of maximum curvature in the electron density profile). Using the argument 
first given in [6], one can match the periodicity with the time taken by the pressure wave and 
reflected wave to travel back and forth within the induction length, i.e.: 

\a2-u2      u2) 
(22) 

where a2,u2 are respectively the speed of sound and flow velocity (with respect to the shock) in 
the post-shock region. We found from Figure 29 a periodicity of 32.5 i^sec, while expression (22) 
yields 31.4 ^isec; the agreement is fairly good, and repeated for most Mach numbers studied. 
Additional cases are found in Appendix E. 
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Figure 30: 2D contours of the refractive index for Ma=16.5; sequence goes top-bottom, left-right 
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We expect that the wave motion seen in 1D simulations will transform into a transverse pattern in 
multi-dimensions. Previous limitations on computing power prevented us from verifying this 
conjecture [6], but it was found that 2D simulations could now easily be performed with a 32 node 
cluster. Figure 30 shows the 2D profiles obtained for the Ma=16.5 case. The 2D cases were 
initialized as in 1D - flow reflecting off a wall on the right - but with a small sinusoidal perturbation 
(see top-left panel in Figure 30). This allowed us to immediately trigger transverse instabilities, 
which developed into a regular pattern. The number of nodes in the transverse direction depends 
on the ratio of the tube height (18 cm) and the induction length (function of Mach number). This 
pattern could also be obtained without the initial perturbation, but after further distance. To 
accelerate the computations the sinusoidal perturbation was kept for all cases studied, and the 
results were verified to be independent of the characteristics of that perturbation. We can now 
compute a simulated interferogram from the 2D profiles. Figure 31 shows the comparison 
between the experimental (left) and computed (right) fringe patterns for Ma=14.7. The 
characteristics are very similar; we are able to see both the smooth, low amplitude wave-like 
fluctuation of the shock front position, the regions of peak avalanche at the regions where the 
transverse waves interact (yellow circles), and the gradual shift of lines past the avalanche region 
due to the radiative cooling. Thus, we have been able to reproduce the key features of these 
experiments and interpret them as the result of periodic fluctuations of the induction region 
between shock front and electron avalanche, coupled by pressure and contact waves. 

Figure 31: Comparison of experimental (left) and computed (right) interference patterns 

Figure 32: Artificial "soot trace" for Ma=16.5 case, showing cell structure formed by triple points 
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This pattern of interacting waves between a shock and reaction front is entirely similar to the 
mechanism of detonation wave propagation [64]. To emphasize this similarity, we can produce a 
standard experimental result of detonation studies, the soot-trace resulting from the passage of 
triple points (interaction points between transverse waves), which generate high peak pressure 
and vorticity (erasing the soot, thus leaving a trace on the surface). We can relatively easily 
monitor this region of peak vorticity and generate a computational equivalent of the soot pattern, 
as shown in Figure 32. The structure of the "detonation" cell for the ionizing shock is shown in 
Figure 33. The analogy with detonation wave structure was also conjectured in [6] and is now 
firmly established with these 2D results. 

Figure 33: Structure of "cell" in ionizing shock propagation 

The CR code was also applied to other problems such as shock layer around shaped bodies; the 
flow was still Argon, which is a common feedstock in plasma-discharges for hypersonic wind 
tunnels for testing of thermal protection system (TPS) materials. Typical profiles obtained for flow 
around a cylinder are shown in Figure 34; T12 is the equivalent temperature of the first excited 
level, and the difference between the excitation temperature and translational (both heavy and 
electron) temperatures are shown. As in the shock-tube studies, there is a significant induction 
region where Th remains much higher than either T12 or Te; the electron temperature remains 
closer to the excitation temperature, as expected from the profile of Figure 24. We also performed 
some initial computations of an experiment performed at the DLR [65] which showed unexpected 
results in the heat transfer to the surface. DLR organized a workshop with selected participants 
(with relevant modeling capabilities) to try to understand the results; despite the very short time 
available and the need to implement additional physics (and model the entire wind tunnel to 
better characterize the flow), our calculations showed the best agreement with the observed 
shock standoff distance, an indication of the accurate reproduction of the non-equilibrium kinetics 
in the flow. Figure 35 shows some profiles obtained from the calculation, which involve a strong 
applied magnetic field. Preliminary extension of the code to the multi-fluid regime was initiated but 
there was not sufficient time to complete that effort. Future development of this multi-D CR code 
will include additional MHD physics, multi-fluid effects and molecular plasma. The latter will be 
performed in collaboration with Von-Karman Institute (VKI). 
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Figure 34: Profiles of temperature differences in shock layer around cylinder (Mach 18.1 Argon flow) 
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Figure 35: Profiles of Argon flow simulating DLR experiment [65]. Top-left: velocity; Top-right: 
magnetic field; Bottom-left: heavy-particle temperature; Bottom-right: electron temperature. 
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8. Particle Methods 

8.1. PIC transport 

The PIC model currently in place is a simple electrostatic, non-relativistic model. Particles are 
generated with variable statistical weight; this is useful in cases where emission is variable, i.e. 
depends on the plasma and field conditions near the cathode. Only electrons are presently 
implemented in the PIC model, and electrode boundary conditions are limited to a couple of 
simplified models. Electrons are "pushed" in three partial steps: first, the velocity is advanced to 
the time level (n+1/2); second, the particle position is changed using the updated velocity; third, 
the particle velocity is advanced again to the next time level (n+1). This is the simplest form of a 
second-order symplectic integration scheme [66]. Note that the velocity must be evaluated at time 
level (n+1) if one wants to evaluate the current density and inelastic collision rates appropriately 
at that level. The global time step is of the order of the average time taken by a particle to move 
by the characteristic length of a cell. There is no strict Courant-like condition for the particles, but 
that in average the particles will not cross more than one cell per time-step. Exception is made for 
the particles in cells lying next to a boundary, as explained below. 

The "move" is in itself decomposed into several phases. Each particle data-structure contains the 
time left to the particle for executing its move. At the start of each iteration, this time-left is 
increased by the global time step At- During the first phase, only the particles that belong to cells 
near a boundary are being moved (this is a cell-based operation, which obviously requires that 
the cell contains a list of particles inside the cell). For these, the exact time at which the particle 
hits the boundary (if at all) is determined, and these particle positions are advanced up to that 
time; this implies that the time-left is decreased by the corresponding amount. These particles are 
then flagged and treated by the particle boundary condition procedure. For example, if the 
boundary is a solid wall, the particle velocity is reflected, and if the boundary is a patch to another 
grid, the particle is buffered for transmission to another processor. Finally, the particles are 
moved again by the remaining time-left individual to each particle. This last phase includes a 
check on the new cell position; if it appears that a particle crosses into a boundary (i.e. it was two- 
layers removed from the boundary, and therefore not considered by the cell-based pre- 
positioning), its trajectory is re-computed with a smaller elapsed time until it end-up within the 
computational domain. This procedure prevents the loss of particles from the system; it would 
affect only a few particles, and only if the global time step is chosen relatively large, and therefore 
is not a significant computational penalty. Note that such particles would end-up with some time 
remaining, which will be processed at the next time-step. The use of a time-left variable for each 
particle allows some flexibility in the particle transport, avoiding the processors to spend 
extraneous time attempting to synchronize all particles. 

The PIC method uses the same grid as the CFD; thus, the 2D cells are quadrilateral but not 
necessarily rectangular. This may generate a small, spurious force on the particles; this is a well- 
known problem in PIC for non-cartesian grid, which may be noticeable mostly for collisionless 
plasma. We believe there is a simple solution to this problem, which will be tried-out in the future. 
Extending the PIC to the magnetostatic case requires to add a rotation of the particle around the 
field line (the Lorentz force). The standard method is to use the Boris algorithm [38] which for 
non-relativistic plasma (as is the case here) is a very simple and fast algorithm. Although the 
Boris algorithm is stable for large time steps, it is not accurate for cocAt» 1. This can be 
problematic for magnetized plasma, since accuracy (especially energy conservation) would 
require very small time steps. We have developed a more efficient algorithm for this important 
case; so far, the algorithm works for uniform magnetic field, but we believe it can be extended to 
the non-uniform case, provided the variation is smooth (the case of a magnetic field discontinuity 
would require further thought). This would allow the more efficient study of magnetic mirror 
configurations, for example. Nevertheless, even the case of a strong uniform field is of interest. 
The new algorithm is described in detail in Appendix F. 
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8.2. Particle Merging 

A critical issue in the problems of interest is the high rate of ionization that can be obtained when 
the energetic particles interact with a dense gas. If each ionization event from a simulated 
collision of a particle with atoms of the background fluid generates additional particles, the 
number of particles can grow exponentially, leading to a commensurate growth in computational 
work. To prevent this, one must devise an algorithm for particle coalescence. Let us first consider 
the merging of two particles of identical type (and mass m) into a single pseudo-particle of 
combined statistical weight mab=ma+mb , and a combined velocity üab={mapa^apa)i(mmab) 
This procedure conserves momentum, but the sum of the kinetic energies of the individual 
constituents differs from the mean kinetic energy: 

SEK = EKa +EKb ~EKab =W'„ T^" +®'b TT" " W'ab —"ab 
Im Im 2 

= ^^^[p2a+p2_2paPbCOS0ab] (23) 

Note that SEK is always positive: 

&a&b  (Pa-Pb)2  s3E     sWaWb  (Pa+Pbf (24) 

mab        2m K      mab        2m 
Therefore, to conserve both momentum and energy during the coalescence process, a quasi- 
internal energy is created, which contains the randomized components of the kinetic energies of 
the initial particles. This is equivalent to describing the pseudo-particle with a distribution of 
velocities, such that the temperature of an equivalent Maxwellian distribution \s:SEK =3/2kT      . One 
could add to the description of the particle this "thermal" component, and there are a number of 
arguments in favor of such a modification. A very sophisticated model based on this approach 
has been described by Hewett [27], and demonstrated high accuracy with a fewer number of 
particles. Besides the reduction in computational cost, there is another potential advantage in 
having internal velocity DF in the pseudo-particle data structure. When dealing with collisional 
plasmas, the rates of excitation and ionization are very sensitive to the energy distribution 
function near the inelastic thresholds, and can be a critical part of the overall plasma dynamics. 
Using a MCC method with only a few particles may generate an unacceptable level of stochastic 
noise; if each pseudo-particle also contains its own velocity DF, a smoother and more accurate 
evaluation of these rates could possibly be obtained. Assuming a Gaussian distribution centered 
on the mean particle velocity and using a Taylor expansion of the cross-section around that 
velocity, one can easily evaluate the inelastic rate as function of the pseudo-particle temperature. 
However, a succession of merging processes would eventually lead to excessive internal DF 
temperatures, and assigning dynamics based on the mean velocity only (i.e. particle trajectories) 
leads to inaccuracies. In the absence of the internal DF of each pseudo-particle, it is clear from 
the discussion above that one cannot combine two particles into a single one while conserving 
mass, momentum and energy. There have been various schemes [67,68] proposed to minimize 
the energy error, but the one described below provides an exact conservation scheme. 

Let us first consider the more general process of combining an arbitrarily large number of 
particles, and to consider the energy in the center of mass (CM) frame. Combining N identical 

particles, we get a total mass M = y\tu,m   , and a total momentum p = y\_pt • The velocity of the 

center of mass is: jjcu =P/M     • Denoting by a prime the variables in that CM reference frame, 

the individual constituents have a momentum: f. = p.-mucu       , and contribute a kinetic energy 

e\ = {p\ f 12m to the "thermal" energy. The latter can be expressed as the difference between 
the total energy contributions of all constituents and the kinetic energy of the center of mass, i.e.: 

SEK=Ywt£—P- = YjmlE- (25) 
^-"'      2m     2M    L"i      2m 
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This particle distribution can now be split into two pseudo-particles with half the statistical weight 
of the entire system. Furthermore, this can be done while transforming the thermal energy into 
the relative kinetic energy of the two "children". Again, consider the split in the CM frame, into two 
pseudo-particles of mass Mil with equal and opposite momentum ^ (see Figure 36). 

^> 

Figure 36: Schematic of fragmentation process in Center of Mass frame after 
coalescence of many individual pseudo-particles 

The total kinetic energy is now: 

2x wf 
••SEt 

(26) 
2(M/2) 

Therefore, one can generate two pseudo-particles with half the mass and statistical weight of the 
center-of-mass, and with equal and opposite momentum in the CM frame, where the magnitude 
is given by (26), i.e.: 

W\=^M8EKI2 (27) 
and with an orientation chosen at random along the unit solid angle. Note that there is no need for 
a formal transformation to the CM rest frame; the quantities of interest can be evaluated directly, 
using (25) for the thermal energy, with post-fragmentation momentums: ±p±^', using (27). 

"=> 

Figure 37: Number of particles (electrons) versus time and distance, without (left, 250,000 
particles) and with (right, 35,000 particles) particle coalescence. 
Notice the exponential growth of electrons emitted by the cathode and generated in the ionization 
region. On the right, particle coalescence automatically controls the number of electrons in each 
cell; the true physical quantities (e.g. current densities) remain the same. 
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The procedure generates two particles from N particles without creating internal energies, while 
exactly conserving mass, momentum and energy. As long as N>2, there is an effective reduction 
in the number of particles, and while there is no conservative process to coalesce 2 particles into 
1, the process of merging 4 into 2 is equivalent. The reduction factor achieved here can take all 
values (n+2)/2 starting from n=1, and is quite efficient for high values of n. 
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Figure 38: Electric potential in diode 10 ns after start, with and without particle coalescence 
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Figure 39: Particle (electron) and fluid (ions) charge densities 10 ns after start of 
computations, with and without pseudo-particle coalescence. 
Reduced statistical fluctuations in the former case indicate the approximately 9-times larger 
number of simulated particles. 
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We conducted preliminary tests of this procedure on a simple planar diode case. Without particle 
merging, the ionization of the gas rapidly leads to exponential growth in the number of simulated 
electrons. With an aggressive coalescence process in place, we were able to reduce the number 
of particles from 250,000 to 35,000 with no significant losses in accuracy of the results (see 
Figure 37). Figures 38 and 39 show the potential profiles and particle charge densities obtained in 
both cases at the same simulated time. Note that from an initially linear profile, the potential has 
developed a virtual anode that partially traps electrons and slowly migrates towards the cathode 
(the ions are immobile in this simulation: the apparent motion is a shift in the ionization front). This 
also causes the field at the cathode to increase, and the electron emission rate to increase as 
well. This profile is in agreement with analytical models [69]. Because the potential is obtained as 
a result of solving Poisson's equation, which filters-out short-wavelength fluctuations, a better test 
is the comparison of the charge densities themselves. Although Figure 39 shows that the 
statistical noise is slightly higher in the merging case - as expected given the reduction in the 
number of particles - the results are in excellent agreement. 

Not only does the coalescence procedure conserve momentum and kinetic energy, but it also 
preserves the electrostatic energy to 1st-order. The electrostatic energy of the initial particles 
being coalesced is: 

i^=2>,Z,.^(x,.) (28) 

where the electric potential field ^^ is a global field, resulting from space charges in the 
complete domain. Assume first that this field is constant. After coalescence, the electrostatic 
energy can now be written as: 

En^ZetfxJ + ^Zeftx,) (29) 

We have used the fact that all particles are similar (same charge), and x+=xc±Sc are the 

positions of the two new pseudo-particles that replace the coalesced ensemble; jcc is the centroid 
of the ensemble. To first-order (dipole) approximation, we have: 

<P(x±) = </>{xc) + E-Sx + o{2) (30) 
The first-order terms cancel out in (8-8), and after equating (8-6) and (8-7) we find that: 

Q^(xc) = 2><^<) (31) 

This equation defines the centroid: the conservation of momentum and kinetic energy does not 
place restrictions on the positions of the new pseudo-particles, only their momentum. The 
centroid position can be approximately defined as: 

xc=n-^^x( (32) 
i 

For particles of identical masses, this is equivalent to the center-of-gravity of the ensemble. The 
approximation of constant scalar potential ^^ can also be justified. Since it is obtained by 
solution of Poisson's equation: 

V20 = -£- (33) 

where p = eiz^-nj is the charge density, it is enough to verify that the latter is approximately 
conserved during the coalescence procedure. In fact, both the charge density and the current 
density are conserved, since for a given cell of volume Vol: 

^   '   '   = — Ze (34a) 
Vol        Vol 

-j.ZmP,.*?^ 04b) 
Vol m Vol 
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Solving a discretized version of Poisson's equation (33) with the charge density defined at the cell 
centers, one obtains the same source field, and therefore the same scalar potential field. Note 
also that the same solution is obtained even if one deposits the space charge on the nodes of the 
cell (a common practice in PIC). The charge density at a node v is defined as: 

<t>v =ZeYJ&iWv(xi)*ZeQ.Wv(xv) + Ze(VWv)^mi(xi-xv) +... (35) 
i i 

where Wv is a normalized weighting function, such that the contributions over all nodes add-up to 

1, and 3^v is the node position. The weighting function evaluated at the node position itself is of 
course 1; after using the definition of the centroid, (8-13) becomes: 

(j>v =» Zen [i + (w„)(xc -xv) + ...] (36) 

After coalescence, the contribution of the two resulting pseudo-particles to the same node is now: 

t = ^Wv(x+) + ^Wv(x+)*ZeQ + ^(VWv)(x++x+-2xv) (37) 

which is clearly the same as (36). Therefore, up to the dipole approximation, the new 
coalescence procedure conserves both kinetic and electrostatic energy, and conserves charge 
density, current density, and electrostatic and magnetic potential fields. 

We believe this approach is significant and very capable; further extensions will include a 
selective algorithm which combines particles which have relatively similar properties, i.e. their 
relative distance in phase space is small. This would prevent the systematic combinations of 
particles of opposite and large velocities, such as in the case of beam-beam interactions. Without 
a selective algorithm, the coalescence could lead to an artificial thermalization. We also plan to 
test the procedure on a large variety of discharge conditions. 

8.3. Lagrangian method 

In addition to Eulerian fluid models, we have also devised a Lagrangian "fluid-element" model, 
where the fluid solution is obtained at each spatial position in the steady-state approximation. The 
fluid element is advected as a pseudo-particle, but yet has internal properties such as density and 
temperature. In the limit of no internal temperature, this corresponds to the "ballistic" integration 
procedure used in [18] and in several electron gun codes. This work was initiated as an attempt 
to gain a better understanding of the essential physics of pseudospark ignition. In particular, 
Kozyrev, Korolev, Rabotkin and Shemyakin (KKRS) [69] developed a pseudo-analytical model of 
pseudospark ignition by treating the problem as one-dimensional, i.e. as a planar diode, and 
looked at the conditions for electron avalanche in the inter-electrode gap. The model introduced 
by KKRS uses a modified version of the Child-Langmuir discharge [70] that takes into account the 
build-up of ion density within the discharge gap. This model is summarized in Appendix B, 
starting with a review of the standard Child-Langmuir discharge. 

The KKRS model provides an interesting insight in the physics of the discharge initiation; 
however it is very approximate and not entirely self-consistent. Notably, although the potential is 
space-dependent, the electron current density and both ion and electron densities are assumed 
independent of position, and the ion outflow time is also constant. The details of the model could 
be improved by: (a) including all spatial dependences; (b) including elastic collisions; (c) including 
non-fluid effects. The model also is based on the Child-Langmuir emission rate (i.e. space-charge 
limited only), which assumes that there is no cathode work function. The effect of an actual work 
function should also be investigated. The non-fluid effects would aim at accounting for the effect 
of pendular electrons in the potential trap mentioned above. 

Before using the full hybrid model in this planar diode case, we thought it worthwhile to 
investigate first if the KKRS model could simply improved by using the Lagrangian, fluid-element 
model mentioned above. This basic hydrodynamic model is described in detail in Appendix C, 
and was implemented into a simple Java code. The fluid-element approach is different from the 
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KKRS analytical model and offers an alternative approach to testing the validity of the physical 
model. In the first application we neglect elastic collisions and recombination, and replace the 
spatially varying ion density with its spatial average, thus bringing the electron-fluid element 
model closer to the KKRS assumptions. The first numerical results were obtained for the case of 
spatially-averaged ion density, with the same discharge conditions as described in [69]. In 
addition to the fluid element solution for the electrons, described in the previous section, there are 
also two other critical variations in the overall model. First, the ion density obeys an equation of 
the form: 

dN,       j        N, 
—L = v1ne '- (38) 

Ot T 

where v1 is the ionization frequency mentioned in the previous section. The decay time-scale ^ 
represents the sum of all contributions to ion removal. At low gas pressures, recombination would 
proceed at slow rates, but ion diffusion to the walls would be more important. In the KKRS model, 
this time scale is determined by the minimum ion time of flight, i.e.: 

L L 
T = — = ^^^ (39) 

vt    peV0/Mt 

and is independent of the gas pressure. Second, the current emitted at the cathode is modified as 
the space charge builds-up inside the gap and the electric field at the cathode increases. Instead 
of equation (B11) of Appendix B, the cathode current density becomes: 

2e • cat 
Je 9e0 Kmej L1I2 

(40) 

As the ion density increases as a result of gas ionization, the slope of the electrostatic potential 
(i.e. the electric field) increases at the cathode after each iteration and the current emitted at the 
next iteration is correspondingly increased. It is important to emphasize that: 

1. without the increase of the cathode current, i.e. the feedback from the space charge onto 
the boundary condition, there never is exponential growth of the current density in the 
discharge. 

2. without the loss of ions, but with the cathode current increase described in item 1 above, 
there is always an exponential growth of the current density inside the discharge. 

With both features present, it is possible to find a critical regime. By varying the gas pressure, one 
can obtain the series of curves shown in Figure 8-5a. 

Typically, the anode current increases by several orders of magnitude, achieving extremely high 
values for high gas pressures. The initial value is usually of the same order as the cathode 
current. The rate of increase is dependent on the pressure, but does not exactly scale linearly 
with the gas pressure (in which case the position of the maximum would be at the same location 
in Figure 40). The decrease following this maximum is due to the fact that: (1) the gas becomes 
fully ionized, and; (2) the ion removal rate removes gas without replenishment; at the end, there is 
pure vacuum in the discharge and the anode current becomes the same as the cathode current 
(pure vacuum diode, with Child-Langmuir emission). It may appear difficult to determine a 
transition point from the curves of Figure 40, although one can conclude that, based on the 
maximum values of the anode current, the 0.7Pa case does not yield to discharge ignition while 
the 1 Pa case does. A clearer picture emerges when looking at the initial slopes of the current 
growth curve at relatively early times. As shown in Figure 41, there is a clear difference in 
behavior as the pressure is lowered below 0.8 Pa, which is estimated as the critical pressure. 
This is slightly greater than the 0.6 Pa value obtained from KKRS for the discharge conditions 
being examined (6 kV applied voltage), but of the same order of magnitude. Thus, despite the 
differences in numerical approaches, we obtain similar results as the analytical model of [69]. 
From this point, several assumptions can be re-examined and relaxed, to better examine the 
qualitative effect on the discharge ignition. For example, the effect of spatial variation of the ion 
density (Figures 40 and 41 are obtained for an average ion density as source term to Poisson's 
equation), elastic collisions, recombinations and more realistic models of ion diffusion and 
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cathode emission. These effects could be examined in the future. Note also that the fundamental 
study of the planar diode can lead to a number of very interesting physical phenomena [71,72], 
despite the apparent simplicity of the device. The combination of rich physics and simple 
geometry make it a very good test case for the hybrid model. 
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Figure 40: Anode current density versus product of iteration number and discharge pressure (in 
Pa). Current density is normalized to initial density obtained at first iteration. 
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Figure 41: Detail of anode current evolution in vicinity of critical pressure 

8.4. Beyond PIC 

In a prior state-of-the-art in hybrid modeling of pseudospark discharges [18], the particles become 
part of the bulk when their total (potential + kinetic) energy falls below the ionization threshold. 
While this technique correctly accounts for the true ionization rate, it does not allow an accurate 
determination of the excitation rates, and is rather coarse (particles just below excitation 
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thresholds may still have significantly more energy than the mean bulk plasma electrons). We 
suggest that a more accurate approach could be developed, based on comparison of moments of 
distribution functions; in that scheme, a particle is more likely to be absorbed by the bulk if its 
properties are close to the bulk-average, while particles can be sampled from the bulk as well, 
thus allowing a two-way transfer. This can be made possible by allowing particles (actually 
"pseudo-particles", which statistically describe a large number of physical particles) to have an 
internal distribution function, i.e. a micro-VDF similar to the prior work of Coppa et al. [73] or 
Hewett [27]. This option was briefly mentioned in Section 8.2 while describing a newly developed 
particle-merging algorithm. This extension of standard PIC can be considered as a simple 
generalization of the method which already treats the pseudo-particles as regions of finite extent 
in space, in order to smooth the distribution of charges and currents onto the grid. A finite extent 
in velocity space seems a straightforward idea. Furthermore, using a Maxwellian form for the 
micro-VDF allows us to directly compare the non-equilibrium component and a bulk (fluid) 
plasma, determining with precision when and where to change the nature of the component (see 
section 4.1, Transfer to Bulk Plasma). This approach may be investigated in the future. 
The transport of particles is traditionally handled by a Particle-ln-Cell (PIC) method; indeed, a 
simple preliminary PIC model (electrostatic, non-relativistic) has been implemented in the code. 
PIC falls in the category of particle-mesh (PM) methods, which avoid the o(N2) problem of direct 
summation of particle-particle interactions (force evaluation) by first computing a field on a mesh, 
then computing the force on any particle from this field. The method has two interpolation steps 
(the so-called "gather-scatter"): first to interpolate the particle charge onto mesh points to define a 
charge density field; second, to compute the force at the particle location from the field defined at 
mesh points. Furthermore, the PIC method does not account for particle interactions at close 
range, since the mesh spacing provides a filtering length scale; thus, when the Debye length is 
unresolved the PIC calculations are notoriously inaccurate, and suffer from "numerical heating", a 
manifestation of poor total energy conservation. This is particularly problematic for dense 
plasmas (especially for laser-target interactions), since the Debye length becomes very small, 
and an extraordinarily large number of grid points would be required. This is an important issue 
and although there are various options we have been contemplating, this issue may require a 
separate, focused research effort. 

Therefore, we have also been looking at alternatives to the standard PIC as the fundamental 
particle transport solver. One promising approach is the grid-free approach (see e.g. Christlieb et 
al. [74]), which relies on binary decomposition of the domain into clusters containing particles, 
followed by a multipole expansion to compute the particle-cluster interactions. The approach is a 
derivation of the Barnes-Hut [75] tree-code method; each domain is recursively divided (forming 
an "octree" in 3D) into boxes until each box (cluster) contains less than a given number of 
particles. Figure 42 shows the process in 2D, starting from a subdivision into 4 quadrants (A-D), 
followed by further sub-division (B yielding sub-quadrants 3,4,7,8); sub-quadrant 7 does not 
contain particles and therefore can be eliminated from the tree-structure. The force at particle 
location * (red dot) has contributions from clusters 3,4, and 8, each one acting as a distributed 
source. 
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Figure 42: (a) domain sub-division; (b) "quadtree" hierarchy (in 2D); (c) particle-cluster interaction 
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This numerical approach is of order jVlniV , i.e. is computationally efficient. By using the particle- 
cluster computation only for distant interactions and direct summation within the cluster for a 
small number of particles, higher accuracy can be obtained by accounting for short-range 
interactions exactly. The grid-free method also uses boundary integrals to account for both 
Dirichlet and Neumann boundary conditions. One of the advantages of the approach is that the 
tree-code approach automatically adapts to the local conditions; thus, there is no conflict between 
grid requirements for a CFD calculation and a PIC calculation. We should emphasize that this 
approach allows us to use non-Cartesian grids for particle transport and avoid the self-force 
problem in PIC methods; we plan on implementing a variation of the Barnes-Hut method 
specifically for this purpose. 
The grid-free/octree method is probably an excellent approach when dealing with flows with 
considerable variation in density scale, e.g. backflow from thruster exhaust in space environment. 
We have so far concluded that the basic Barnes-Hut tree method has a lot to offer, but the overall 
procedure can be greatly simplified by using a grid. This is no-longer a "grid-free" method, but 
since we need a grid for the fluid (CFD) component anyway, this is not an issue. The cells of the 
grid provide a natural way to compute a source for the multipole expansion, without having to 
recursively construct a quad-tree (octree in 3D). This allows us to apply more effective 
parallelization procedures. While the basic method has been developed and tested, 
implementation into the general hybrid code has been delayed due to lack of sufficient 
manpower, and will be attempted during the remainder of the project. 

8.5.   Inelastic Processes 
Inelastic collisions are especially important for the problems of interest. The degree of deviation 
from Boltzmann and Saha equilibrium for the excited and ionized states respectively is especially 
important, since the population densities of these excited states and ions impact a number of 
other processes (radiation, material coupling, etc). Thus a detailed and non-Maxwellian 
collisional-radiative model of the excited and ionized states is very much desired. Again, the 
collisions of the non-Maxwellian component (particles) is typically treated by a stochastic 
approach (Monte-Carlo Collisions - MCC), while the inelastic processes within the fluid 
description are treated by a set of ODE, the master rate equations. The combination of the two 
approaches into a unified framework can however be problematic. 

,kthbin 

Figure 43: (a) schematic of atomic levels; (b) discretized (isotropic) energy distribution function 

Consider for example collisional ionization from an atomic level n by electron impact. In is the 
ionization potential of the level, and let us assume that the bound-free transition leaves an ejected 
electron with a negligible kinetic energy*. The rate of ionization by electrons from this level is: 

This is far from being accurate at high initial electron energies; one of the key tasks currently under-way is to implement 
a systematic model to account for variable energy transferred to the bound electrons, and the tabulation of the appropriate 
differential cross-sections and collision probabilities. 
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dt 

J»GO 

^e-aieyj-fie) (41) 

where ^ is the kinetic energy of the electron, z, the velocity, andy(£-)the distribution function. 
Assuming that the electron energy distribution function (EEDF) is discretized into B bins of 
variable spacing Aek, the rate of change is: 

which we re-write as: 

where 

dt 

dt 

k 

k 

«e(k)=A£kf(£k)= \d£-f(s) 
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and k(k)=°(£k)-&iM 

(42a) 

(42b) 

(43) 

(44) 

The rate of change is obtained as the sum of elementary processes, such that electrons from k' 
bin are moved to another energy bin rn such that: 

£k~ 
For each elementary process, we have: 
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(45) 

(46a) 

(46b) 

(46c) 

(46d) 

The last equation indicates the production of electrons with zero kinetic energy (the ejected 
atomic electron). The interesting aspect of equations (46a-d) is that one can construct a complete 
system of kinetic equations and solve implicitly: 

1 + £V4Ä 

i+Z' a 

~SNt 1 rhst 

® 
Sne(k) 

= 
rhsn 

-' 

(47) 

One can use time scales larger than the characteristic time scale of ionization/recombination, and 
by extension, excitation/de-excitation for a full Collisional-Radiative model. There are, however, 
some remaining issues with this description: 

(1) The elementary ionization process transfers electrons from kth-bin to mth bin, but if the initial 
and final electron energies are such that equation (47) is not exactly satisfied, a systematic 
error would be introduced in the energy conservation. 

(2) Even if the bins are defined such that energy conservation is guaranteed, according to item 
41 above, the scheme replaces the varying EEDF inside a bin by a constant (average) 
value; this is a zero-th order approximation, which needs to be extended to higher-order for 
improved accuracy. 
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(3) If the distribution is not isotropic the situation becomes more complicated; the inelastic jump 

would produces changes from all cells+ lying along a circle of radius v = J2slm    into all 

cells that intersect a circle of radius J2{s-In)lm   • Again, one would need to compute the 

fractional cell area of the discretized phase space on either side of this circle. 

The formulation (47) is a path towards an implicit MCC procedure, described in a later section; we 
have not yet implemented it but have been making progress towards developing the basic MCC 
procedure for collisional-radiative kinetics, a significant task in itself. 

The MCC model must guarantee energy conservation and detailed balance. The latter is obtained 
when the cross-sections for the forward and reverse processes satisfy certain relationships; the 
Fowler relation for ionization/recombination: 

g0Edaion (E;E'E") = ^^g+EE"darec{E,E";E) (48) 

and the Klein-Rosseland relation for excitation/de-excitation: 

g(E daliiE) = guEda^f{E') (49) 

These relations have been used to guarantee detailed balance in the implementation of a 
collisional-radiative MCC algorithm; this work was performed in collaboration with R. Caflisch of 
UCLA. The implementation of the reverse process is not necessarily an easy task, and to our 
knowledge there has never been a fully-consistent collisional-radiative MCC model. One problem 
is the implementation of the recombination process; as can be derived from the Fowler relation, 
the recombination cross-section has an infrared divergence* which leads to practical problems in 
a standard Monte-Carlo procedure. So far, a standard set of techniques have been used to 
compute the recombination; more sophisticated approaches will be used in the next year. One 
may ask why a stochastic (MCC) model should be used for recombination, since this is usually a 
process that becomes important only at high density, for which a continuum model may be more 
appropriate; there are several reasons: 

(1) Any process must satisfy detailed balance; if recombination is not included, one may 
obtain inaccurate and inconsistent results. 

(2) Beam particles can be energized in one region and transported to another region where 
they can lose energy and recombine; this would be the case, for example, of electrons 
ejected from a target by a ponderomotive force and returning to the target. 

(3) There is no guarantee that a hybrid methodology would be able to "capture" all 
thermalized particles into a fluid component, albeit desirable this may be. 

(4) Electrons can suddenly lose most of their energy by an excitation/ionization process, 
making them good candidates for recombination. 

Although we have only recently done some basic verification tests, the completion of the basic 
collisional-radiative model is a significant step. The tests performed include the evolution of the 
electronic state populations towards Boltzmann equilibrium, stability of the equilibrium distribution 
function (see Figure 44) and we have developed and verified (see Figure 45) the correct 
expression for the H-theorem in collisional-radiative plasma - to the best of our knowledge, this is 
the first time the H-theorem was derived for this case - details are provided in Appendix D. 
Further developments will focus on improved techniques for dealing with the stiffness of 
recombination, and extension to implicit MCC procedures and particle kinetics with micro-VDF. 

We have also completed a discretized phase space approach for the inelastic collisions (i.e. 
kinetic solver, following the steps described in Equations 46a-d). Again, basic tests have recently 
performed to verify the accuracy (such as consistency of the rates); the H-theorem was again 
verified, and the dynamics of the relaxation were verified against the MCC algorithm (for 
excitation/de-excitation only). During these tests we discovered an interesting aspect of the 
dynamics which suggests a breakdown of ergodicity under specific conditions (again, an effect 

Momentum conservation is assured by the heavy particle. 
* This divergence at zero-energy of the incident electrons is also reflected in the divergence at low temperature of the 
Maxwellian rate. 
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verified by the MCC model). Figure 46 shows the evolution of the EEDF when relaxing as a 
consequence of inelastic (excitation/deexcitation only) collisions. Note that in the absence of 
elastic e-atom and e-e collisions, the EEDF develops discontinuities occurring at multiples of the 
energy gap of the bound-bound atomic transition. This feature was also found in the MCC 
algorithm after computing the relaxation for longer times than previously tests. This shows that 
the discretized phase-space kinetics is a much faster algorithm which easily allows us to compute 
the dynamics over a longer time scale, but also that the physics are correctly implemented, since 
the two independent models cross-validate each other. The final version of this discretized solver 
works for arbitrary binning of the EEDF, also works for ionization and recombination (the latter 
involving transitions from two different bins into one). The current scheme also exactly conserves 
mass and energy (momentum is not conserved for electron-impact inelastic collisions, since the 
heavy particle can absorb an arbitrary of momentum; this is an approximation of order me/M). 

Electron Distribution Function: Excitation, Ionization, 104 electrons 
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Figure 44: Tests of stability of equilibrium EEDF in CR-MCC model 
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Figure 45: (a) verification of H-theorem during relaxation; (b) verification of energy 
conservation: error per time step (red) and integrated error (blue) - 0th-order only 

52 



0.100 

0.00000 

0.08000 

0.07000 

0.06000 

0.05000 

0.04000 

0.03000 

0.02000 

0.01000 

• 
: 

0.100 

0.09000 

0.08000 

0.07000 

0.06000 

0.05000 

0.04000 

0.03000 

0.02000 

0.01000 

[ 

0.100 

0.00000 

0.08000 

0.07000 

0.06000 

0.05000 

0.04000 

0.03000 

0.02000 

0.01000 

EEDF:   t=2.10e-10 [sec] 

 i i  i i i i i i i  

 ! T  T ! ! ! ! ! !  

 I 1  1 I I I I I I  

-f- r-c T  T 1 1 1 1 1 1  

1 00 1 20 
e{eV) 

EEDF:   t=4.04e-07 [sec] 

100 120 
e{eV) 

EEDF:   t=1.01e-05 [sec] 

100 120 
e{eV) 

140 160 180 200 

 I 1 1 I I I I I I  

 ! T T ! ! ! ! ! !  

140 160 180 200 

I      I      I      I      I      I 

\ 

r—»     i      i      i      i      i 
140 160 180 200 

Figure 46: Evolution of the EEDF as a result of collisional excitation/deexcitation only (2-level 
atom) by discretized kinetic solver 
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Electron Distribution Function: Excitation, 8x104 electrons 
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Figure 47: Evolution of the EEDF in similar test case as Figure 46, computed by MCC. 

A summary report describing this kinetic solver is being completed. The phase-space approach 
was investigated because (a) it provides a means of verification for the Monte-Carlo model; (b) it 
is an alternative approach to the non-Maxwellian CR kinetics. The latter would be especially 
relevant when combined with a Fokker-Planck model for elastic collisions, and a Vlasov step for 
transport. This will be investigated in the future. 

8.6. Remaining Issues 

The standard MCC procedure is to draw a random number, compare it to the probabilities of 
various events and decide on accepting or rejecting an event. This makes the low-probability 
events very noisy (poor statistics), and if improbable events are occasionally selected, the 
statistical weight of the particles can make it such that unphysical values (negative) of population 
densities can be obtained. This can easily be seen as follows. The stochastic equivalent of (42a) 
or (46a) is:   

dN- 

dt V       p 

\le 
-JL-k     M —L 
m       i(p)   "  V 

(50) 

where  ^u    is tne statistical weight of the pseudo-particle and   J> is the cell volume. The 
p 

expression UJ  IV = n    is an equivalent density (per unit volume) of physical particles with the 

same properties (momentum, energy). The equivalent of (46b) is: 

dn„ 

dt -k«PyN»-»p 

In the standard MCC, the probability of the ionization event is obtained: 

PA-e 
-vAt 

«Vi&i = kmNM&i 

(51) 

(52) 

and if the event is accepted, the particle is destroyed, i.e. dm  =-m    • Tne stochastic solution is 

equivalent to the differential (continuous) solution (51) in average, since the probability of the 
event is related to the rate of change by (52). However, when the event occurs, there must be a 
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corresponding change in the level population, i.e. ^ . For large statistical weights and 

low population densities Qv < «  )> tnis mav result in unphysical, negative population densities. 

Instead, if the incremental change is applied to the level at all times, i.e. ^ = _£   . jy 
i(P) 

•npAt 
but the change in the statistical weight (i.e. particle destruction) is applied once, conservation of 
mass and energy is obtained at best only in average. In fact, the situation is worse, because 
small changes in level population are due to collisions with specific particles, while the change in 
particle density occurs once for a different particle. Thus, this approach is definitely not desirable. 

Let us examine in more detail the collisional process by pseudo-particles. Let us borrow the 
syntax of quantum mechanics and write the transition from a state I n n> to a state |p',f > > 
where: p is the state of an incident particle, p' is the final state of the same particle, n is the 
electronic level of the target atom, and f describes a free (ionized) state. This describes the 
collisional ionization of an atom by a particle. It is important that the final state p' is the result of 
both the initial particle state and the initial electronic level; therefore, p' depends on both p and n. 
The rate of depletion of level n and the rate of change of the particle density are written as: 

+ = -'£<p',f\<Tv\p,n>Nn'np (53a) 
dt 

dt -Y.<PX^\CTV\P>n>Nnnf 
(53b) 

Equation (8-31 a) contains a summation over initial particles, while (8-31 b) is a summation over 
levels, not particles. The rate of production of a product particle p'is: 

dt 
<p',f \av\p,n>Nnn (54) 

No summation is involved in (8-32), since p' corresponds to a unique combination of (p,n). The 
total system is composed of L equations for the level populations, P equations for the incident 
particle densities (P=number of pseudo-particles in cell), and LxP equations for the particles 
resulting from each interacting combination (p,n). Whatever scheme is used to solve the kinetics, 
it is important to conserve mass, i.e. to satisfy the following properties: 

(55) 2>„=2X=-JX, 
O,») 

The master kinetic equations lead to an implicit formulation: 

\+^<pf\av\pfl>npät <8V»+E </>>*! av\Pfl>Nnäönp= -£</#!crv\pfi>N„npä 

l + Iv„Ä <Vlv^«=-Iv* 

(56a) 

(56b) 

The implicit C-R system results in the following linear problem: 

1+E„v* v.a 

vpa i+y vna 

SNn 

® = - 

Snp y r a 
£—tn   P" 

(57) 

Note that this system is a reduced version of the full C-R kinetics which also include the produced 
particles. If one uses detailed balance and solve for the reverse processes (|/?',f >h>|/?,n>    ). the 
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dependence of the rates on JJ i would imply that the matrix on the LHS would be extended and 

be of a size: (L+P+L-P)2 • Typically, with 10 electronic levels and 40 particles per cell, this would 

imply inverting a 450x450 matrix at each cell. This is clearly too expensive to consider, at least 
with a standard Gauss algorithm. Even in its reduced form, the inversion of the matrix is very 
expensive. An approximate solution which still guarantees the conservation properties is to use a 
global rate reduction by the factor: 

7+L//>*+L„v»Ä (58) 
Thus we obtain: 

y rvnst y vv8t 

5N = =^ =-N  =^  (58a) 
1 + Lp

VP8t + Ln
Vn8t 1 + Lp

VP& + Ln
Vnti 

5Hp = -np      = ^"V"*   (58b) p        M + YvJ + y^ 
This approach guarantees that Nn and ^ remain positive, and that the conservation laws 

remain satisfied. With this global time scale reduction, each rate is replaced by: 
jpy.f        <p',f\av\p,n> 

1+Lp
vp5t+Ln

v«5t 

From this, the produced particle has an equivalent density: 

r St 
6n. = +^= ^^=  (60) 

i+y vjt+y vß 
One can then generate LxP particles with the statistical weights corresponding to Equation (60) 
above, and rely on a global cell-based particle coalescence technique to limit the total number of 
particles to a reasonable size. This coalescence scheme has been developed within the previous 
year; it is a unique (and deceptively simple) algorithm to combine particles and exactly conserve 
all quantities (mass, momentum and energy) in the process - important features that have not 
been reproduced in prior particle merging schemes. Furthermore, it also conserves electrostatic 
and magnetostatic energy to first order, while higher-order corrections could presumably be 
achieved with a slight increase in algorithm complexity. 

There is yet an alternative to the generation of scores of particles (each with small statistical 
weight), which is to construct an average product particle: 

!,(«,•) I/>•> \p'>=^"      P (61) 

This indicates that all conserved properties are averaged, i.e. momentum and kinetic energy 
(particles have the same mass). Note that the average product particle contains a micro-VDF with 
a given total density, mean velocity and energy spread (first three moments of the micro-VDF). 
Therefore, if micro-VDF is implemented as an essential feature of the new, "extended" particle 
transport method, the inelastic collisions automatically require the construction of such an 
extended particle as an average product of collisions. If the micro-VDF is not implemented, or if 
the micro-VDF of the product particle is too diffuse (hot), it is necessary to split this average into 
several (at least two) particles with no micro-VDF or smaller (colder) internal distributions. This 
process is equivalent to the particle coalescence algorithm, which was developed earlier to 
control the number of particles generated by an ionization avalanche. 

The most important points can be summarized as follows: 
(a) Some of the key machinery for the advanced particle methods have been (particle 

coalescence) or are currently being implemented (collisional-radiative MCC); these have 
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important applications beyond the pure hybrid simulation problem, i.e. can be applied to 
other, more traditional particle solvers (PIC). The next step will consist of developing a 
complete complex particle model for inelastic collisions and compare with the standard 
MCC that has just been tested, and the phase-space kinetic solvers. 

(b) The overall approach is very synergetic; advanced methods for particle-based collisional- 
radiative models are also relevant to particle-fluid coupling (thermalization), particle 
transport (higher accuracy with extended particles), and hybrid MCC/kinetic solvers, as 
mentioned above. 

(c) The most urgent and key problems have been identified and are being systematically 
attacked; both the phase-space and Monte-Carlo methods can be used to provide the basis 
of a detailed non-Maxwellian collisional-radiative model and to study the dynamics of beam 
particles in dense media. This non-Maxwellian model will extend the fluid/Maxwellian model 
that is currently being developed (see next section). 

(d) There is parallel work being performed to develop a database and cross-section models, as 
explained in the next section. This is needed to guarantee consistency between the various 
levels of description, e.g. non-Maxwellian and Maxwellian models. 

(e) Further work is required for the transport problem; implementation of the grid-based tree 
method as described earlier; automatic grid adaptation for high dynamic gradients (based 
on tree-code method); incorporation of radiative coupling such as ponderomotive force and 
non-perturbative effects such as above-threshold-ionization; radiation transport (for which 
we will leverage an STTR effort). 

We expect to continue work on the phase-space CR kinetics solver and investigate the implicit 
MCC described above in more detail. 

While the implicit MCC offers a potentially intriguing solution to the problem at hand, the use of a 
phase-space kinetics solver is still very attractive due to its speed and easy handling of low 
densities, which would have poor statistical significance in a Monte-Carlo procedure. However, 
the discretized phase is impractical for particle transport except in the cases of lower- 
dimensionality problems. There is, however a third approach: hybridization of kinetic (phase- 
space) and Monte-Carlo/PIC method. This approach has been used in a restricted fashion by O. 
Batishchev at MIT, with whom we have been collaborating. In this approach, the kinetic phase 
space is generated on the spot from the set of existing particles in a PIC simulation, and all 
collisional processes are solved through the kinetic solver. This has two main advantages (a) an 
implicit solver can readily be used, reducing the effective stiffness of the problem; (b) gradual 
changes in population densities can be computed, eliminating the problem of potentially 
unphysical results (see discussion below). The disadvantages are the additional cost of mapping 
the particles to the phase space and back (presumably more than compensated by using a 
kinetic solver instead of an MCC), and statistical noise generated during the mapping process (a 
finite number of particles having a limited amount of information, and a slow statistical 
convergence as 1/vW). The latter issue could potentially be alleviated by using complex particles, 
with internal distribution function and variable statistical weight. Alternatively, we can use multiple 
samplings of the phase-space and multiple "histories" of the particle trajectories, thus smoothing 
out statistical fluctuations and allowing higher precision on populations with low statistics. This will 
be examined as a high-priority item in the future. 
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9. Conclusions and Future Work 

As explained in the executive summary, this report is a preliminary document regarding the work 
performed under the lab-task on hybrid modeling, and was principally concerned with the 
investigation of some fundamental techniques to advance the state of the art in complex, multi- 
physics simulations of non-equilibrium plasma. Considerable progress has been made in several 
areas, but the work remains incomplete. To summarize the accomplishments: 

- We have developed a new object-oriented software infrastructure in Java, easily 
parallelized and applicable to any platform including heterogeneous computing. The 
platform is complete with in-house real-time, 3D visualization and preliminary GUI to 
facilitate problem set-up. The data-structures are flexible and can easily accommodate 
future extensions to more complex problems. 

- We have developed a Lagrangian method and used it to study the dynamics of the space 
charge layer and explosive emission in a model pseudospark discharge. 

- We have investigated several, finite-volume numerical schemes for CFD and developed 
a compact 3rd-order scheme which provides an optimal balance between accuracy and 
stability, yields excellent resolution of contact discontinuities, and has been thoroughly 
validated. The scheme was extended to ideal 2T-MHD equations and to the Collisional- 
Radiative equations for atomic plasma. Details of the numerical scheme are provided in 
Appendix E. 

- We have validated the Collisional-Radiative fluid model against a series of experiments 
and proven that the mechanism behind fluctuations of the dynamics of ionizing shock 
waves in noble gases can be explained by the theory of detonation cells. 

- We have developed a preliminary version of a multi-fluid scheme, with implicit coupling of 
the electron fluid motion and electrostatic fields. 

- We have developed and implemented a basic hybrid model with an electrostatic PIC 
model and a simple MCC algorithm for ionization to test the fundamental issues with 
hybridization. 

- We have developed a new algorithm for particle merging that for the first time, 
simultaneously conserves mass, momentum and energy, allowing control of the number 
of particles. 

- We have developed a new algorithm that computes particle trajectories in the highly 
magnetized case rapidly and accurately when E and B fields are both present. 

- We have developed a basic MCC procedure for Collisional-Radiative kinetics, verified it 
and proven the corresponding H-theorem for plasma with excitation and ionization 
reactions. 

- We have developed an implicit kinetics solver for non-Maxwellian collisional-radiative 
kinetics using discretized energy phase space (another first) that works with non-uniform 
gridding and guarantees energy conservation in a single step. 

- We have performed preliminary tests of GPU acceleration by porting some key 
algorithms and examined performance results to better understand how to maximize the 
impact of GPU programming on future large-scale simulations. 

There are, however, some remaining issues and work to complete. In the near-future, we propose 
to accomplish the following: 

1. Extend the CR fluid code to include the complete MHD physics (resistive and Hall) in 3D. 
2. Extend the CR fluid code to include molecular plasma; this work will be accomplished in 

collaboration with VKI. 
3. Implement the fluid code and Maxwellian kinetics on the GPU. 
4. Complete the phase-space discretized solver for non-Maxwellian CR kinetics by adding 

elastic collisions and implement procedures to minimize memory requirements; the latter 
will allow future generalization to non-isotropic distribution functions. 

5. Complete the particle merging algorithm by adding automatic generation of discretized 
VDF to improve sampling of candidate particles for merging (using an octree algorithm); 
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this will considerably generalize the applicability of the scheme and prevent artificial 
thermalization in some conditions. 

6. Complete the particle-push algorithm for magnetized conditions in E and B fields to allow 
smooth variation of fields; this algorithm can then be used to efficiently study a wide 
range of magnetized plasma conditions with PIC, such as magnetic mirrors and cusped 
field thrusters. 

7. Finally, implement the improved PIC, the phase-space kinetics solver and the MHD fluid 
code into a new version of the multi-D hybrid code, and demonstrate it on a generic 
discharge (e.g. beam energy deposition or pseudospark). 

This program is mostly aimed at completing the items already initiated in this lab-task. Other 
issues, e.g. the implicit MCC technique, the micro-VDF, the multi-fluid algorithms, may be 
investigated as well by leveraging other activities or another research task. 

The fluid-PIC hybridization we have been focusing about implies that there exists a plasma 
component that is close to equilibrium (the "cold" fluid). In some cases, the dense bulk may not 
be describable by a fluid model. This is the case for example of high energy plasma obtained 
from ultra-intense, ultra-fast laser interactions. There may even be an additional "hot" component, 
which characteristic energy well beyond the range of the bulk plasma. This is the case, for 
example, of fusion products. We have been able to investigate some aspects of this problem with 
standard PIC techniques (see Appendix G), but the limitations of the approach are very clear: 
multiple scales, spatial (unresolved Debye length) and temporal (hot particles move on much 
smaller time scales). The same problem occurs here, i.e. the hot electrons (modeled by a PIC 
method) have much faster dynamics than the bulk fluid. Inevitably, we need to investigate 
advanced multi-scale methods, which would be the subject of a different research effort. 
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Appendix A: Multi-Fluid Algorithm 

Consider the conservation equations for density and momentum only in one -direction: 
dtn + dx(nu) = 0 

8t(nu) + dx(nu   + pelme) = 0 

(A1) 

(A2) 
_2 define an eigenvalue: ce =kTe I me which is the speed of sound in an isothermal gas. Then (A1) 

and (A2) can be written as dtQ + dxF = 0 , where Q is the vector of conserved variables and F 
is the flux in conservative form: 

d, 
' n^ 

•ö, 

nu 

n{u2+c2
e)j 

• 0 

We define the transformation matrices: 

X-- 

x~ 

and the diagonal eigenvalue matrix: 

A = 

u-c 
     4 
2c 

u+c 

~2c~ 

1     1 

u+c   u-c 

2c 
J_ 
Yc 

(A3) 

(A4a) 

(A4b) 

«4C 

0 

0 

u-c 
(A4c) 

The Jacobian of the system (A3) is obtained as: A = X ' • A • X. The characteristic jumps are: 
r 

a = XAQ- 

u-c 

2c 
An 

V   V 2c 
An 

A(nu) 

2c 
A(nu) 

2c 

(A5) 

In order to construct a Godunov scheme that uses flux-limiters on the characteristic variables, it is 

necessary to verify that: (a) AQ = X~' • a ; and (b) AF = X~' • A • a . The first relation is trivial to 
verify. For the second, we first note that: 

A-a 

2       2 \ u-c    k       u + c . , 
-An + -  —A(nu) 

2c 
2       2 

U -c 

2c 
•An 

2c 
u-c 

2c 
A(nu) 

Then, after some algebra: 

X'-A-a 
A(nu) 

(u2-c2)An 4 2uA(nu) 

A(nu) 

A(nu2)+c2An 

(A6) 

(A7) 

The second term is equal to the flux component of (A3) as long as c2 is invariant, in which case 

c2An = A(nc2). This is true because the system (A1-A2) describes an isothermal gas: the 
pressure is controlled by the temperature, which is an external variable here: there is no equation 
of state (EOS) that determines the temperature from only n,u, and there is no conservation 
equation for the energy or pressure. The system can be generalized to more than one dimension, 
where (A2) extends to: 
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dt(nua) + dß(nuauß +öappjme) = 0 aß 

The system (A3) becomes: 

' n ^ 

nux 

nu. 

KnuzJ 
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n{u2
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V     "M*"z      J 
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nu u x    y 
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(A8) 

(A9) 

The flux along a direction n (with t,s the correspondingly rotated unit vectors normal to n) can 
be obtained through the following matrix definitions: 

(u„-c)      nx        ny 

X-- 

x-' 

and the eigenvalue matrix is: 

A: 

2c 2c 2c 2 
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2c 
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With these matrices, the flux-limited solver can be constructed. An implicit algorithm can also be 
constructed, such that: 

0 0 

-At,    1+AT-A7        AM 0 

o       -At,     I+A;-A;   At, 
0 0 

where   A+,A~   are the Jacobians for positive  and  negative eigenvalues only.  They are 

constructed by A± =X~] •A± -X, with: A+ = {..., max(0, Xa),...}, and A" = {..., min(0, A"),...}. 

We can now turn our attention to the right-hand sides of the conservation equations, which have 
been ignored so far. We will consider first the electrostatic approximation, which implies that only 
an electric field is present, and all magnetic fields can be neglected. The conservation equation 
(A1) does not change, but the momentum equation is now: 

dt(neu
a

e) + d. neu
a

eu
ß

e 

kT„ 

in e J 

- — Ea 

m„ 
(RT+RU) 

in,, 

where RT ~ -0.71 • neV{kTe) is a thermal force and 

R-u =mene- [ven (Un -ue) + vei (U, -ue)] 

(A12) 

(A13) 
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is the frictional force and ven,vei are the collisional frequencies for momentum exchange. The 

latter can be simplified when the ions and neutrals are both at the same velocity Ü; if the plasma 
is at sufficiently low density for an ion-slip to occur, the approach described below can easily be 
extended to the more general case. For simplification, we also neglect the thermal force, which 
can also be easily added later on. 

The second term on the left-hand-side is the advection term which was treated in the previous 
section. The contributions of each term on the RHS can be examined one by one. The easiest is 
the collisional momentum exchange. One can write this contribution as follows: 

S(neü
a

e) = St-veh[neU
a -(ne<)] (A14) 

Evaluating terms on the RHS at the advanced time level will yield: 

S(nX) = a-veh [neU
a- (nX)] + (St-vehU

a)5ne - {St-veh)S(neu
a

e ) (A15) 
The term involving the electric field can be written in a similar form, 

S(neu°) = -a — neE
a -St — ne -8Ea -5t—EaSne 

m„ m„ m„ 
(A16) 

and we need only to express the change in the electric field. Using one of Maxwell's equations: 

(A17) 
BE    ->    VxB 

dt Mo 
and neglecting the magnetic field (electrostatic approximation), this leads to: 

£odtE
a =-4ztntU? -nX) 

Again, expressing the RHS at the advanced time level yields: 

SEa = -—St[z^Uf -neu
a

e )+ — StS{neu
a

e ) 

(A18) 

(A19) 

One can therefore construct a point-implicit solution of the form: 
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Note that this is a point-implicit part due to the Taylor expansion of the RHS. One should also 
include the advection process, i.e. the matrices defined in (A11). Without the energy conservation 
equation, this would lead to a 7x7 matrix system: 3(momentum) + 3(electric field) + 1 (density). 
However, since the evolution of the electric field does not involve neighboring points, it would be 
simpler to solve for the change in electric field, and include this solution into the evolution of the 
momentum. Inserting (A19) into (A16), we obtain: 
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Appendix B: Pseudospark Analytical Model 

Consider the flow in the planar diode with a gap L, with O = 0 on the left side (cathode), and 
O = +V0on the right-side (anode). Let us now consider a cold fluid (Te =0) model without 

ionization and without elastic losses (vm =0,v' =0,vr =0). The conservation equations 

dn„      d 

dt     dx (»X) = o 
d(neu

x)     8 + —(«x<)=- 
ox 

nEx 

dt Ox ' me 

along with Poisson's equation for the electro-static field: 

V-E = e0e(Z,nt -ne) 

describe the evolution of the system. Using E = -V® the steady-state solution is given by: 

d2 

dxz 
-O 

_JJL = ct, 

n m u     e     e    e     ^ 
OX 

The latter can be integrated to yield: 

sT
e=-me\u

x
e) 

• +e- 
ex 

,2 
eO = C'' 

(B1) 

(B2) 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 

The value of this constant can be estimated by considering the emission process at the cathode, 
where O = 0 . The electrons within the cathode have to overcome a potential barrier (the work 
function), and this potential energy becomes the electron kinetic energy away from the cathode 
surface. Therefore, the constant is approximately equal to the work function eW. In the case of 
space-charge limited flow (see [70], Chap. 8), the work function is assumed to be W = 0 , and the 
cathode is an unlimited supply of electrons. The physical basis for this approximation relies on 
explosive electron emission from micro-tips. If we denote the spatial derivative of the potential as 

O =d^> I dx .Poisson's equation becomes: 

<t> -Je^o 
111.. 

2e($ + W) 

Multiplying (B8) by O  and integrating, we obtain: 

''2m. 

1/2 

M 2 2V    i" 
Jes0 

1/2 

(O + W) I  2 w"2} 

(B8) 

(B9) 

In the case of unlimited electron emission W = 0 and the electric field at the cathode is assumed 

to be vanishing, i.e. O    =0. In that case, (B9) can be integrated to yield: 

O(X): 
9jes0 2m„ 

,1/2 2  J 
4  $ 

Enforcing O(I) = V0, one can invert (B10) to obtain the current density: 

• CL 

9c 

2e 
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V, 3/2 
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This is the Child-Langmuir (CL) current density, obtained for steady-state, space-limited vacuum 
discharges with infinite cathode emissivity. Given the spatial dependence (B10) of the 
electrostatic potential, solving Poisson's equation for the electron density yields: 

.CL 4    Vn 
-2/3 

, , (B12) 
9 es0L

2 U, 
Equations (B11) and (B12) can also be used to determine the electron velocity profile. Note that 
the density becomes infinite as x^O in (B12). This is because in the CL model the electrons 
are injected at zero velocity, while the electron current density is assumed constant. In a real 
world scenario, at least one of these assumptions is broken. 

The KKRS model extends the CL solution by including ionization. The continuity equation for the 
ion density is: 

dn-     — 
—I- + V(niui) = v'nn-v

rni (B13) 
ot 

Kozyrev et al. assume that the ion density is independent of space. In that case, one can 
integrate (B13) with respect to x and obtain a time-dependence only of the gap-averaged ion 
density: 

Oft; ft; 
 L + _l 
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2Zfi. 
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J/2 

-Vn 

J 
The ionization term (first on the RHS) can be approximated, for a cold electron fluid, as: 

< o'v >» olu„ 

dri;        Tl; _; 
and (B14) can be re-written as:   —- + —*- = n^o 

dt      rn 
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\     e J 

+ v 
j 

Since je < 0 the term on the RHS of (B16) is a positive source. The solution of (B16) is: 

nt(t)- ~t,T° fdt<e+t'/r- 
JO 

°Je(0 

(B14) 

(B15) 

(B16) 

(B17) 

(B18) 

The electron density in the KKRS model is then obtained from the Child-Langmuir value. Using 
(B11) and (B12), one can write the electron density profile as: 

CL 2me 

\yt:bo j 

J/3 
( j   \2/3 

J ( (B19) 
V A J 

Both solutions for the ion and electron densities can now be entered into Poisson's equation: 

52<D 
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A = <jltiflL 
V me  J ^ZteV^'1 

(B22) 

ML •2 

Equation (B21) is similar to equation (10) of [69], except that here the constant A includes an 
additional term due to recombination. Following KKRS, integration of (B21) yields the solution: 

<P = tl'3S4'3 -^At2e-<]ie(g')eg'dg' (B23) 

Taking the value at the anode (cp{l) = 1) and differentiating with respect to time: 

•1 
dg 9 

(B24) 

Again following the analysis by KKRS, one can observe that the normalized current density can 
grow indefinitely with time, signaling the breakdown and pseudospark initiation. This occurs when 

A > V3 , or when the density is above a critical value (neglecting the recombination frequency): 

n>n, 
r        \112 

3m 

ZtM 
{älLy (B25) 

The physical interpretation is as follows: when the ionization process is sufficiently large 
compared to the ion removal rate, there is an excess positive charge being built-up in the 
discharge gap. The electrostatic potential has a maximum at some location within the gap and the 
electric field is correspondingly increased, which in turn increases the electron current density. 
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Figure B-1: Non-dimensional current density solution versus time for three cases of gas 
density in inter-electrode gap. 
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The non-dimensional current is shown in Figure B-1. Here we see that for n>ncr a discharge is 
formed in the gap and the current increases faster than exponentially, the asymptote occurring 
closer to the cathode the higher the density is that the critical density. The non-dimensional 
potential is shown in Figures B-2a/c. In Figure B-2a, n=ncr and we see a monotonic increase in 
potential through the gap from cathode to anode. In Figures B-2b and B-2c we see a non- 
monotonic potential variation through the gap with a potential maximum that increases with n/ncr. 
Kozirev et al. [69] explain this region as being a result of the electrons having insufficient energy 
to overcome the potential barrier and reach the anode, thus producing a "potential trap" in the 
gap. 

Figure B-2a: Non-dimensional electrostatic potential solution versus time and distance; 1st case of number 
density. 

^H  0.0 
i^m 0.5 
^m 1.0 
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Figure B-2b: Non-dimensional electrostatic potential solution versus time and distance; 2   case of number 
density. 
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Figure B-2c: Non-dimensional electrostatic potential solution versus time and distance; 3rä 

case of number density. 
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Appendix C: Electron Fluid-Element Model 

The basic equations to solve are: 
dne 

~dt 
V(neue) = ne 

d_ 

dt 

d(nemeu") 

dt 

ln  kT    |   "e^e 
2   e    e 2 

a    ß v   (Pe<5ß +nemeu"u^) = -eneE
a -nemevmue 

2\ 

n±T„ 

-en 

2 

(Ea<)- 

(C1) 

(C2) 

(C3) 

(uaua)-Q. 

where a = x, y, z, öa
ß is the Kronecker symbol and summation over repeated indices is assumed. 

/ is the ionization potential and Qe is the rate of change of electron density due to ionization and 

recombination: 

a : «„«„ < <jlv > -n„n,- < arv >= n. .(„<-„') (C4) 

where  cr'(r) is the cross-section for ionization (recombination), v is the electron velocity and the 
brackets <> denote statistical averaging. Combining the first two equations (C1-2) one obtains: 

KVp(ue) = E {vm+v -v )ue 
dt me neme 

The energy conservation equation (C4) can then be written as 

e 

in 
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2    me   2 m 

where we have used the covariant derivative: 

dt    dt 

(C5) 

(C6) 

(C7) 

The last term on the RHS of (C6) indicates the amount of energy (kinetic, potential and thermal) 
that is exchanged during ionization and recombination processes. Using (C5) one can extract an 
equation for the thermal energy alone, i.e.: 

3  k  dTe 

2 me   dt 

PeVaua
e) (   2\ 

2 
V      J 

k  ( 
(yl-vr)— e'+-Te 

2   e (C8) 

adiabatic heating    Ohmic heatins endo I exo-thermicity 

Note that we have neglected the ion velocity, so that j » je = -eneue. 

Equations (C1), (C5) and (C8) fully describe the electrons as a fluid. In the case of negligible 
thermal energy, only (C1) and (C5) need to be solved and the pressure gradient in (C5) can be 
neglected. In the steady state, (C5) can be re-written as: 

d_ 

dx 
-eE- 1 dPe 

n„  dx 
•(vm + v'-vr)(meue) (C9) 

where se =meue 12 and for simplification we have assumed variation with respect to only one 

spatial direction (x). 

Let us define the total non-thermal energy: sT
e =meu

2
e 12-e®, which includes the kinetic and 

potential energies, v = vm +vl -vr and a time scale dr = dx/ue. Equation (C9) becomes: 
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dei 
\2me{sT

e +e®)]'2 -kTe 
d\nn„ dT„ 

(C10) 
dx dx dx 

and after Taylor expansion of the RHS: 

(7+ vdr) deT
e + kTed In ne + kdTe = -2(vdr) (eT

e + eO) (C11) 

Note also that we have neglected the non-linear functional dependence of the frequencies vm , 

vl on the electron energy se. One could derive a full 3-dimensional system of equations with 

respect to the variables ne, sT
e and Te, to be solved implicitly. This is not necessary at this 

stage, and a simple forward integration or a predictor-corrector method are considered sufficient. 
The steps to the solution are as follows: 

1. determine a spatial step dx: 
2. solve for the total "cold" energy ("predictor step") 
3. determine velocity at new position 
4. solve for density and temperature 
5. obtain new values for energy and velocity ("corrector step") 
6. obtain new values for density and temperature 
7. replace old values with new and advance position 

The first step can be easily accomplished as follows: 
f \ 

(n%)        L-x 
dr = min 

v„ + \v -v 
dx = u„dr (C12) 

The (n%) factor is a restrictive parameter that must be much smaller than 1 (e.g. ~ 0.1). The 
second step in the numerical scheme is done by solving (C11), neglecting the changes in density 
and temperature: 

del  with   del -2-W-te 
lMydr) 

The predicted velocity (third step) and its gradients can then be found 
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eo) 

ue (x + dx) - 
m„ 

-(?/ +eO(x+dx)j 

112 

(C13) 

(C14) 

Note that we use the knowledge of the potential at the advanced position (cD) to determine the 
acceleration due to the electric field. If the potential is known only at specific locations (i.e. on the 
nodes of a grid), it is necessary to interpolate to obtain its value at any position. Step 4 can be 
obtained by solving the following two equations: 

dlnne +dlnue =(vi-vr)dr (C15) 

and [l + iv'-v^dr^T^vJr 
3k 

(vl-vr)dt 
20' 

+T„ (C16) 

knowing that d\nue =lnue(x+dx) -lnue(x). Once din«e and dTeare known, they can be used 

in step 5 to obtain a "corrected" value for the total cold energy, si (x+dx) = si (x) + dsT
e with: 

kT d\nn„ + kdT 
ds _2JvdlLUr 

lMydz)v eO 
lMydr) 

(C17) 

and where se ={se +se )l2  and cD = <S(x+dx/2)  ("centered" variables). A final value of the 
velocity at position (x+dx) can then be obtained, and used in step 6 to determine again the 
gradients of density and temperature and the values ne(x+dx) and Te(x+dx). Finally (step 7), 
the solution can be displayed or stored, and the following replacements are made: 

•   ue(x+dx) —>ue(x) 
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• ne(x+dx)—> ne(x) 

• Te (x+dx) -> Te (x) 

• si (x+dx) —» £ J (x) 
• x + dx —> x 

The procedure is repeated until the complete solution is obtained for the total inter-electrode gap. 
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Appendix D: Detailed Balance and H-Theorem 

Consider an electron induced collisional ionization from an atomic level k: 

[e,Ak -> e\e",A+] = w{eAk^e»A+yN<<Ak)N<<e)G(e,)G(e")G(A+) (D1) 

where w(path) is the rate of the given reaction path, N(s) is the number of particles of type s, and 
G(s) is the total degeneracy ofthat particle. Following (II.26), the total degeneracy for electrons is 

G(e)de = Vg
25/2•3/2 ei/2de (D2) 

while the degeneracy of the atom or the ion is (a = k, +): 

G(Aa) = Vga Gtrans{ea) (D3) 
Strictly speaking, the degeneracy due to the translational degrees of freedom for the heavy 
particles should be included; however, the mass difference between electrons and atoms implies 
that the center-of-mass is approximately co-located with the atom and ion, whose kinetic energy 
€a changes little. Therefore, one can ignore these translational degrees of freedom (they are a 
constant) in the formulation which follows. 

The corresponding number of particles is: 

N(e)de = r)(e)G(e)de (D4) 
where 

j/(0 = fe-'e 

is the mean occupation number; here, ß = 1/kT and for electrons the normalization constant is: 
? = --4 (D5) s     gsv   T v     ' 

with AT = 
>L-—r (D6) 

the thermal deBroglie wavelength. One can also define variables per unit volume, i.e. total density 
n = N/V, differential density n(e) = N(e)/V, and the energy distribution function: 

/(e) =^   with ;0"/(e)de = l (D7) 
Note that 

n(e)=n/(e) (D8) 
And that one can also define an energy-dependent degeneracy: 

^=M^)(ff <D9> 
such that n(e) = r](e)g(e). The equilibrium distribution is the Maxwellian: 

fM(e)de = ^r2e-^de (D10) 

And one can also write the distribution function as function of the velocity, 

KvWv = f^f^m (DID 
for which the equilibrium (Maxwellian) distribution is: 

fM{vWv = (^)3/2 e-•2l*kTdH (D12) 

One must also specify the Boltzmann equilibrium relation between levels: 
Nl=nL= 9le-Aekf/kT (D1 3) 
Nk       "ft       0k 

And the Saha equation for ionization equilibrium: 

(HsiiX =3±z e-'k/tr (D14) 
V nk >       gk 

Where the * denotes equilibrium values and where 

^ = 2(•f2 (D15) 
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is the partition function for the electrons. 

The forward rate of the ionization (D1) is proportional to: 

nkn(v0) v0 dalkeo^+£ii£2) 5(e0 - e1 - e2 - Ik) d
3v0d

3v1d
3v2 (D16) 

To simplify the notation, we used n0 = n(i?0), and 5({e}) to represent respectively the density of 
particles with a given velocity or energy, and the Dirac delta-function imposing energy 
conservation. Note that momentum conservation is not specified as the heavy atom can absorb 
any amount of momentum, due to the small mass ratio me/MA. We also eliminate the subscript in 
the cross-section, since the reaction path is well understood. Similarly, the backward rate (3-body 
recombination) is: 

n+n{v1) n(v2)v1v2darö({e})d3v0d
3v1d

3v2 (D16) 
At equilibrium the forward and reverse rates are equal; using n(v) = ne/0)and the Maxwellian 
distributions (D11), we find: 

3 

{^y P?)* e-ß^+^-£^Vlv2 dar = v0 da1 (D17) 
Using the Saha equation (D14), this expression simplifies to: 

gkv0 da1 = (^-)g+v1v2 dar (D18) 

Expression (D18) is the Fowler relation. 

The elementary cross-sections da1, dar are functions of the velocities (or momenta), and include 
all angular variables; they are triply-differentiated cross-sections, of the form: 

da1 =    d3a - (D19) 
de dWdCl v ' 

Where W is the energy transferred by the incident electron to the target atom. One can also 
express the rates as function of the doubly-differential cross-sections, averaging over the angular 
variables. The forward and backward rates become: 

Rion = nk n0 v0 da1 5({e}) de0de1de2 (D20a) 
and Rrec = n+nr n2v1v2 där 5({e}) d€0d€1d€2 (D20b) 
At equilibrium, we now find, using (D10) and (D14): 

gk€0 da1 = (^rv 5+ e-L€2 där (D21) 

This is another form of the Fowler relation, for cross=sections averaged over angular variables. 
We will use this expression below, as well as the rate expressions (D20a-b). 

For an ensemble of N particles, the (classical) number of independent micro-states available and 
compatible with a given total energy is: 

G N 
G = "- (D22) 

The entropy is given by (see 5.1.1 and 5.1.9 of [1]) 

5 = fein G (D23) 
And therefore, using the Stirling formula ln(iV!) « N\nN - N: 

S « k[N\nG -N\nN + N] = -kN [ln(£)-l] (D24) 

The time-derivative of the entropy for particles of a given type is therefore: 

or, recalling the definition of the mean occupation number (D4): 

£ = -ft(S)MD (D25) 
Equation (D25) shows that the only time variation of the entropy is contained in the number of 
particles, weighted by the logarithm of the occupation number. Consider now the change in 
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entropy from the collisional ionization and the reverse process. Since N = nV, the change in 
entropy can be written as: 

i'anOo),       f    x   .   9nOi),       ,    .+an(e2),       ,-     v\ —— In r](e0) + —— In ^(ej ——- In ?/(e2) 
^nt ,nk,      

dt (D26) 

The rates of change can be obtained from the rates of ionization and recombination, i.e. 
Y~Rwn - Rrec\ after simplifying the notation by using n0 = n(e0), we obtain: 

d_ 

dt 

The first term in brackets is 

55 = +kV {(Rrec - Rion) In [^iiZijJ (D27) 

[... ] = [n+n-L n2v1v2 dar — nk n0v0 da1] 5({e}) de0de1de2 (D28) 
From the Fowler relation (D21), we have: 

dar = BjL(J^_\(j1_\dai (D29) 

Which we can use to re-write the first term in brackets on the RHS of (D28): 
11 .    , 

(le1y(le2\
2   _ -• 9k I   "•     \ i/e0\ n^*2 brJ brJ ^r=^^^J(eie2)lteJ?7iJ725(ei)5(e2) 

Using (4.9): 
-9k(   h3   \ (8nm2\2 (2e0\ = d°lj\8^){—) UT)•2 

in 

M2 

(D30) 

gi\m )    \   h3   J \m 1 

The expression (D28) can now be re-written as: 

[...] = da' [(^) gf)] gff*ijiij2 - nfc?7o] 5({e}) deod^d^ (D31a) 
or 

[...] = d<7*[i;o5fc5(e0)] f^ijiijz -^ijol 5<M> de0de1de2 (D31b) 
Thus the rate of entropy change (D27) becomes: 

222 = fcv{dä'[t70Äff(e0)][1,^1,2 - j/fcj/o] In pM]} 5({e}) d^od^d^ (D32) 

This rate is of the form 
»SEoc(;c-y)l„g) (D33) 

With all other pre-factors being positive quantities, this expression is always positive when either 
x > y or x < y, and is zero when x = y. Thus the entropy always increases during relaxation, and 
equilibrium is reached when 

MOo) = i)in(ßi)il(ßi) (D34) 
This result is an expression of the H-theorem for the collisional ionization/recombination process. 

A similar procedure can be used for the excitation/de-excitation. In that case, the rates of 
excitation and de-excitation can be written as: 

Rx = nknefe(y)fA(yk)c da*kv^(v) d3vd3vk (D35a) 

Rd = ntnefeMhWdafc^ d3v'd3vt (D35b) 
Where c = v-vk and c' = v'—v{ are the relative velocities between electron and atom. 
Kinematics show that 

d3vd3vk _ d3v'd3v? (D36} 
c c' 

while the conservation of energy implies that e = e + Ak(. The forward rates being equal at 
equilibrium, using (D13)and cdc = c'dc' we find: 
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qkc2 do*     , \ = qfc' do., • ,  . (D37) 

This is the Klein-Rosseland relation. Again, using cross-sections averaged over the angular 
variables and expressing the distribution functions in term of energy alone, we find a similar 
relation: 

9k€ dö^le) = 9(e'dö^Ke) (D38) 
The change in entropy due to this reaction is: 

-ÖS = +kv\(Rd-Rx)\n\^^]} (D39) dt Lv L)je(e))7fcJJ v ' 
Using the Klein-Rosseland relation (D37), this leads to: 

^5 oc d-o^n(eW9k g) - nfcn(^}ln [j| j] 

or 

^SS<x gkEdä'{rwe(e') - ??fc?7e(e)}ln [gg j] (D40) 

This result is also of the form (D33) and also implies that entropy increases during relaxation until 
equilibrium is satisfied by the relation between the mean occupation numbers, r\iqe{e') = rjkrje{e). 

References 
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ABSTRACT 

A series of shock tube experiments performed in the 1970s at the Institute for Aerospace 

Studies, University of Toronto, led in the discovery of instabilities in relaxing shock struc- 

tures in noble gases under hypervelocity conditions. The instabilities were oscillatory in 

nature and found to affect the entire shock structure including the translational front, in- 

duction zone, and electron avalanche. Theoretical models were first developed in order 

to reproduce the length and time scales of the observed quasi-equilibrium state, and later 

extended to include unsteady plasmadynamic simulations that verified the influence of pres- 

sure oscillations in one dimension. Despite these attempts, a complete explanation for the 

oscillations nor a quantitative analysis of the multi-dimensional shock structure has been 

provided to date. 

This dissertation builds upon previous modeling efforts, extending the numerical simu- 

lations to a high level of accuracy and detail so that coupling of complex wave phenomena 

and nonequilibrium effects can be well resolved. This has necessitated the development of 

a numerical capability aimed at relaxing shock layers and other unsteady, high-enthalpy 

nonequilibrium plasmas and is the focus of much of this work. The plasma is described 

as a two-temperature, single fluid with the electronic states convected as separate species. 

Solution of the convective transport is handled via upwind shock-capturing techniques, ex- 

tended to third-order on general curvilinear meshes. A collisional-radiative model describing 

the kinetics of excitation and ionization and reverse processes allows for a non-Boltzmann 

distribution of the excited levels. The solver is developed within a parallelized software 

architecture, implemented entirely in Java and capable or execution on distributed memory 

machines. 

The numerical solver is developed in a systematic fashion with much emphasis placed 

Distribution A: Approved for public release; distribution is unlimited. 
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on code validation. The transport schemes are benchmarked using standard test cases. The 

collisional-radiative model is benchmarked as well on a steady flow fields before considering 

unsteady calculations. 

Numerical simulations of ionizing shocks in argon are conducted to gain insight to the 

shock structure and help determine the source of the oscillations observed in the experiment. 

Solutions presented in the form of simulated interferograms provide a direct comparison 

with experimental interferograms enabling identification of key wave structures. Results 

show that the instabilities are caused by a resonance pattern of longitudinal and transverse 

waves that give rise to ionization cells that are analogous to detonation cells. Furthermore, 

a mechanism is proposed for the oscillations which takes into account the unsteady wave 

phenomena coupled with the collisional-radiative kinetics. 
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v specific volume, velocity component in y-direction 

V vector of primitive variables, Vandermonde matrix 

V diffusion velocity field 

"V volume 

w velocity component in ^-direction, weight for Gaussian quadrature 

w velocity w.r.t. laboratory coordinates 

W vector of characteristic variables 

W relative velocity field 

x specie mole fraction 

y specie mass fraction 

Z particle charge, partition function 

Greek Symbols 

a characteristic wave strength, ionization fraction, plasma diffusivity 

ß normalized magnetic field 

e0 dielectric constant, permittivity of vacuum 

rj plasma diffusivity 

(5 finite-difference approximation 

A forward-difference operator: (•)# — (-)L 

rj plasma diffusivity 

7 adiabatic exponent (ratio of specific heats) 

K thermal diffusivity, wave number 

A eigenvalue 

Xu Debye length 

A diagonal matrix of eigenvalues, optical escape factor 

fi momentum transfer operator 
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p0 magnetic permeability 

vTS collision frequency between species r and s 

U) plasma frequency, general source term 

Cl vector of source terms 

II tensor momentum flux density of the fluid (Maxwell stress tensor) 

p mass density, plasma resistivity 

p rate of denisty change 

a collision cross section, plasma conductivity 

r relaxation time scale 

e specific internal energy 

£ number of optical electrons 

Superscripts 

'       rate of energy density production/destruction 

*      excited state 

°      standard reference state 

•      time level 

allowed transition 

F     forbidden transition 

parity-forbidden transition 

spin-forbidden transition 

Subscripts 

conservative form, capture 

electron specie component 

mesh index in x- or ^-direction, ion specie component 

mesh index in y- or ry-direction 

mesh index in z- or (^-direction 

heavy (atom) specie component 
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n specie component, normal component 

N north 

p primitive form, periodic 

s general specie component 

L, left state 

R right state 

„ photon 

x vector component in x-direction 

y vector component in y-direction 

z vector component in ^-direction 

^ vector component in ^-direction 

v vector component in ry-direction 

Q vector component in (^-direction 

II parallel component 

_i_ perpendicular component 
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CHAPTER 1 

INTRODUCTION 

As a proven complement to experimental results, flowfield simulation has become an integral 

component in the engineering process, providing valuable insight to observed phenomena. 

In particular, modeling of nonequilibrium plasma flows has emerged as a key technology for 

many critical aerospace applications, including aerodynamic flow control, re-entry and hy- 

personic air-breathing vehicles, as well as capillary discharge and electric propulsion devices. 

As applied to such cases, modeling can aid in improved aerodynamic performance, thermal 

protection systems, combustion enhancement, and thruster efficiency among others. 

The complexity of such high enthalpy flows is as vast as the range of characterizing 

conditions, from highly collisional regimes encountered in shock layers, to supersonic base 

flows that give rise to near-vacuum states. These flows are dominated by nonlinear wave 

phenomena and nonequilibrium plasma conditions, requiring an accurate description of the 

transport processes along with generalized equations of state that can account for a non- 

Boltzmann distribution of states. 

In relaxing shock layers, for example, plasma transport through the nonlinear compres- 

sion shock results in conversion of bulk kinetic energy to random thermal energy which is 

then distributed between the various internal modes of the plasma through collisions. If the 

time scales of such collisions are comparable to the convective times scales to be resolved, 

then the resulting nonequilibrium states of the plasma must be evaluated through the use 

kinetic models. 

In stark contrast to collision-dominated shocks, flows through nonlinear rarefaction waves 

can be nearly collisionless, resulting in a cold plasma. While such plasmas may be unable 

to relax through collisions, radiation emission and absorption becomes important and must 
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be accounted for. 

Furthermore, when unsteady flow effects are considered, coupling between the plasma 

transport and nonequilibrium effects becomes especially important. In many cases the dy- 

namics of the flow can depend heavily upon accurate treatment of the thermophysical prop- 

erties, requiring accurate and complete descriptions of the equation of state. The sensitivity 

can be quite pronounced, as nonlinearities can amplify small changes. The equation of 

state in turn depends on the local conditions as determined by the transport, for which cor- 

rect temperature jumps through shocks and temperature drops in rarefactions, for example, 

should be accurately computed. 

With this in mind, it is the focus of this research not to include as much nonequilibirum 

complexity as possible, but rather to focus on developing a relatively complete model of the 

nonequilibrium effects considered and to ensure proper coupling with transport phenom- 

ena. In particular, the current work is limited to monatomic gases so that nonequilibrium 

effects of the electronic states can be studied in some detail. The approach will be very sys- 

tematic, starting from an accurate treatment of the plasma transport, described by a two- 

temperature, single-fluid model, which is then coupled with a collisional-radiative model 

that includes the kinetics of excitation and ionization and all reverse processes, allowing 

a non-Boltzmann distribution of the bound electronic states. Particular emphasis will be 

placed on validation through benchmarks, ensuring proper coupling between transport and 

kinetics. In particular, the numerical model developed in this work will be validated against 

the shock tube studies described in the following section. 

1.1     UTIAS experiments 

Shock tubes have been and continue to be an invaluable tool in providing thermochemical 

data for gases under non-equilibrium conditions. They are able to generate gasdynamic 

phenomena with time scales on the order of relaxation times necessary to achieve ther- 

modynamic equilibrium. For gasdynamic processes occurring more rapidly than relaxation 

processes, the gas will be left in a state of non-equilibrium, thereby allowing measurement 

of reaction rates and collision cross sections in a controlled environment. 

Due to its simplicity as a monatomic gas and its relative abundance, argon in particular 

has extensively been studied in the context of shock tubes.   Without an energy sink for 
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rotational or vibrational modes or dissociative processes, high shock speeds and associated 

temperature jumps are easily attainable, making it ideal to study electronic excitation and 

ionization kinetics. The first experiments on ionization relaxation in argon were carried out 

by Petschek and Byron [85], the results of which were used to benchmark theoretical models 

in subsequent work. The structure of an ionizing shock wave in argon was first calculated by 

Biberman and Yakubov [11] whose results are shown in Figure 1.1. These results indicate 

a compression shock at x = 0 cm through which the argon gas is rapidly heated (within 

several mean-free paths) to temperatures above 2 eV. At these temperatures, there exist 

atoms with sufficient thermal energy to excite and ionize other argon atoms through inelastic 

collisions. The electrons produced by these collisions are then heated through thermalization 

with ground state atoms, indicated by the initial sharp gradient of Te from 0-0.75 cm. 

Once a sufficient number of priming electrons have been liberated, they themselves begin to 

dominate inelastic collisions due to their high velocity in comparison with that of the atoms. 

Electron production and temperature steadily increase until just before 4 cm, at which point 

the rate of inelastic collisions increases exponentially, resulting in an electron avalanche. The 

distance between the compression shock and the peak ionization fraction in the avalanche is 

known as the relaxation or induction length. The heavy-particle temperature then rapidly 

drops due to the large number of electrons and the large cross section for thermalization 

through Coulomb collisions. 

Combination of such experimental data with theoretical calculations has yielded approx- 

imate values for cross sections and rates associated with excitation and ionization. Knowl- 

edge of key parameters from experimental data such as the relaxation length and ionization 

fraction allow for the tailoring of rates used in theoretical calculations until agreement is 

achieved. In particular, it has been found that atom-atom cross sections for excitation from 

ground state have the greatest influence on the shock structure and the relaxation length. 

Since the gas down stream of the shock is not ionized, atom-atom collisions immediately 

following the compression shock generate the initial priming electrons which in turn become 

the dominant ionizing species once sufficient number densities have been obtained. Table 1.1 

offers some values of the atom-atom cross sections used in previous studies. The range of 

values exceeds an order of magnitude and indicates the relative uncertainty in this particular 

cross section. 
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Figure 1.1: Distribution of electron and atom temperatures and degree of ionization in a 
shock wave in argon on the assumption that the initial electrons are formed by atom-atom 
collisions. The Mach number is 16, the pressure ahead of the shock 10 mm Hg, and the 
initial temperature 293 K. Taken from [128]. 

Authors 2/eV] 

Harwell and Jahn [49] 
Morgan and Morrison [80] 
Kelly [60] 
Merilo and Morgan [76] 
McLaren and Hobson [72] 
Glass and Liu [42] 1 

7 x 10"23 

7 x 10"24 

1.2 x 10"23 

1.2 x 10"23 

2.5 x 10"24 

2 x 10"23 

Table 1.1:   Atom-atom cross section parameters for excitation from ground state used in 
various attempts to reproduce the shock structure in argon. 
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Figure 1.2: Experimental interferogram of argon shock structure at Ma 14.7 from [42]. First 
fringe shift from the left is the compression shock which is followed by the electron avalanche 
approximately 4.4 cm upwind. Flow is from right to left. 

Of the numerous studies conducted and results obtained, it was not until the shock tube 

experiments conducted at the Institute for Aerospace Studies, University of Toronto, [42] 

showed that under certain conditions, a definite dynamical behavior could be associated with 

a strong ionizing shock in argon. It was discovered that the translational shock front propa- 

gating in pure argon "develops sinusoidal instabilities which affect the entire shock structure 

including the ionization relaxation region, the electron cascade front, and the final quasi- 

equilibrium state" (cf. Figure 1.2). The authors noted similarities between the oscillating 

shock front of the ionizing argon shock and detonation shock waves and sought techniques 

for suppressing the ionization instabilities that could also be applicable to detonation waves. 

While it was found that small amounts of impurities including molecular hydrogen, nitro- 

gen, and oxygen were suitable in quenching the oscillations, a valid explanation for their 

existence nor a concrete link to detonation phenomena was found. 

Attempts to duplicate these anomalies numerically were not made until the transient, 

one-dimensional simulations of Cambier [21] were able to show a definite coupling between 

the ionization kinetics and the gasdynamics through pressure sources.   It was found that 
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pressure spikes in the electron avalanche region are reflected down stream to the compression 

shock, thereby causing fluctuations in the shock temperature and speed. This mechanism 

is similar to that found in detonation waves, furthering the case for a link between the 

two. The further significance is that it introduced yet another criterion to gauge the quality 

of theoretical models against experimental data. An accurate model should be able to 

reproduce the oscillations of the experimental results to the same degree. Despite these 

efforts, the work was never extended to simulate the instabilities of a multi-dimensional 

ionizing shock. 

1.2     Scope and overview 

It is the primary focus of this work to develop a numerical method for the transport of 

nonequilibrium plasma as described by a collisional-radiative model that can be applied to 

study the structure of multidimensional ionizing shocks in argon. Modeling such a structure 

requires high-order transport solvers to resolve the dynamical nature of the shock structure 

as well as a detailed chemical kinetics scheme to solve the processes of nonequilibrium 

ionization. The ability to accurately do so would be a significant contribution to the coupling 

of gasdynamic and collisional-radiative modeling. This would also open the door to many 

problems of interest including re-entry dynamics including base flows, rapid expansion of 

plasmas, RF plasmas, laser-plasma interaction, etc. 

The plasma is described by the two-temperature, single-fluid equations with treatment 

of the electronic states as individual as formulated in Chapter 2. A numerical formulation 

based on a finite-volume discretization is given in Chapter 3. Treatment of the convective 

transport is discussed in some detail, beginning in Chapter 4 with a third-order reconstruc- 

tion scheme for which the stability analysis in Chapter 5 is performed. The convection 

scheme is benchmarked against several standard test cases in Chapter 6 as applied to the 

Euler and ideal MHD equations. The collisional-radiative model developed for argon is 

presented in Chapter 9. 

Numerical results of the Glass and Liu shock tube experiments are presented in Chap- 

ter 10 in terms of one- and two-dimensional simulations. Both steady and unsteady ID 

simulations are used to establish the cross sections and rates that are best able to reproduce 

the experimental relaxation length and ionization fractions.   Two-dimensional simulations 

6 
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are then preformed to determine the actual shock structure.   As an extension to external 

flow, the solver is then applied to flow around a circular cylinder in Chapter 11. 

The parallel framework that serves as the backbone of the numerical solver is presented 

in Chapter 12. It is developed entirely in Java and is capable of execution on distributed 

memory machines. 
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CHAPTER 2 

GOVERNING EQUATIONS 

The governing set of equations at the foundation of the current research are presented in 

this chapter. They include all of the relevant physics to be modeled, including convective 

and diffusive transport, wave (acoustic) phenomena, chemical kinetics, and so on. Of critical 

importance is the coupling of these effects and how they are accounted for in the formulation 

and resulting numerical implementation. 

In particular, a self-consistent formulation between convective transport and wave phe- 

nomena is crucial. This is important, for example, to ensure proper jump conditions across 

shock waves and other discontinuities that are necessary for accurate calculation of the re- 

action rates needed for the collisional-radiative model. As a result, added emphasis will be 

placed on accurate treatment of the convective terms. 

The plasmas to be investigated are assumed to be sufficiently collisional such that the 

continuum hypothesis is valid. As a result, a Maxwellian distribution of the velocity is 

taken, allowing a fluid description of the plasma. The resulting fluid equations are presented 

here in conservation form and are hyperbolic in nature. It is from the hyperbolic nature 

of these equations that numerical formulations will be be developed. The diffusive and 

kinetic processes will be treated as source terms that can be updated independently1^ the 

convective terms. 

We begin by introducing the general form of the governing equations and some properties. 

We then get into the specifics in which we introduce the two-temperature (2T) equations 

which we finally couple with electromagnetic effects. 

Within a time step. 
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2.1     Conservative formulation 

The governing equations are presented here in differential form to facilitate their derivation. 

They will be cast into integral form in the following chapter which will serve as the basis 

for the numerical finite-volume formulation. The flow equations in divergence form can be 

expressed as 

dQ 
at 

v-F = a (2.1) 

where Q is the vector of conserved quantities, F is a second-order tensor containing the 

flux density of Q, and fl is a vector of source terms. The convention adopted in this work 

is that the mathematical nature of the left-hand side (LHS) of Eq. (2.1) will be strictly 

hyperbolic while fl contains all terms to the contrary. These terms may include diffusive, 

dispersive, chemical kinetics and other such processes, each of which must be dealt with 

appropriately. In particular, these processes may have associated time scales much smaller 

than that of the convective processes, and temporal resolution of these scales in both an 

efficient and accurate manner requires operator-splitting techniques to be employed. That 

is, the transport equations are solved independently of the source terms, which are in turn 

solved independently of each other. In such an approach, a change is computed for the 

convective contribution, 

dQ 

at -V-F (2.2) 

followed by the contribution from the various source terms, 

dQ 

at *^concb 
cond 

dQ 

at ^diff, 
cliff 

dQ 

at 
n chem i (2.3) 

chem 

the combined sum of which gives the total change of the conserved variables, 

dQ=dQ 

dt ~   dt 
+ dQ 

dt cond 

dQ 

dt cliff 

dQ 

dt chem 

(2.4) 
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2.1.1     Hyperbolic terms 

Operator-splitting can be used to analyze individual contributions to the governing equa- 

tions. In particular, operator-splitting is applied here to isolate the hyperbolic contribution 

to the governing equations, resulting in 

^+V-F = 0. (2.5) 
at 

Taking the directional derivative of the LHS of Eq. (2.5) along an arbitrary direction n gives, 

^ + VÄ • F = 0, (2.6) 
at 

or equivalently, 

^ + V • Fn = 0, (2.7) 

where Fn = n • F is the vector of flux density in the n-direction. This form is particularly 

useful in the analysis of the governing equations and will be used extensively throughout 

this work. Upon application of the chain rule, 

dF(Q) 
dn 

Eq. (2.6) can be expressed as 

dF 
dQ 

dQ=Ad®, (2.8) 
dn On 

where A = dF/ÖQ. This system is classified as hyperbolic if all eigenvalues of the Jacobian 

matrix A are real and has a complete set of right eigenvectors, r*j. This work will deal only 

with systems for which the flux Jacobian matrix A can be diagonalized as, 

A = RAL, (2.10) 

where A is a diagonal matrix of real eigenvalues and R and L are matrices of right and left 

eigenvectors, respectively. In general, diagonalization of the Jacobian matrix when expressed 

10 
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in terms of the conserved quantities can be fairly complex. To facilitate diagonalization, the 

Jacobian is re-expressed through a similarity transformation, 

dQdVdFdV 
A ~ 77T7777777777777 K*-1*-) dV dQ dV dQ 

MApM'1 (2.12) 

provided by the transformation matrices, 

M = dQ/dV (2.13) 

M"1 = dV/dQ. (2.14) 

Because A and Ap are similar, they share the same eigenvalues, although their eigenvectors 

span different eigenspaces. Their eigenvectors are related by 

R = MRp,     L = LpM~1. (2.15) 

The vector V can arbitrarily be defined, but will be taken as the vector of primitive variables 

as will later be shown (hence the subscript p in Eq. (2.12)). With such a diagonalization, 

Eq. (2.9) can be cast into characteristic form as, 

dW      .   dW , 

1H+A^=0> (2'16) 

with W = LQ and assuming A to be constant. In the transformation from Eq. (2.9) to 

Eq. (2.16), the hyperbolic system has been decoupled, and as a result, each characteristic 

equation can be solved independently of each other.2 The exact form of Q, V, and F, as well 

as their resulting diagonalization, to be used in the current research are the subject of the 

following sections, which include the basic flow equations coupled with the bi-temperature 

and magnetohydrodynamic models, for which the form of £1 will also be derived. 

This is a necessary step if the solution technique involves nonlinear operators, such as limiters. 

11 
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2.2     Two-temperature model 

For flows that can be described by very high Mach numbers, the air may become appreciably 

ionized. For such cases in which ionization results from a hot plasma, an equation for the 

electron energy is also required. As the atoms in the fluid are ionized and an electron gas 

is formed, electrons rapidly thermalize with each other, and a Maxwellian distribution and 

associated electron temperature Te can be assumed if the electrons are sufficiently collisional. 

The slow energy exchange between between electrons and the heavy particles, however, 

means that the two species, in general, cannot be described by the same temperature. As 

a result, a two-temperature (2T) model in which the electron thermal energy is convected 

independently of the total energy is necessary. 

Such a model can be achieved by augmenting the governing equations for the bulk 

fluid with the electron fluid equations. Incorporation of the full electron mass, momentum, 

and energy equations leads to a two-fluid (2F) description of the plasma. This can be 

computationally restrictive as the electron conservation equations introduce the electron 

thermal velocity, ae, which can be several orders of magnitude greater than that of the 

heavy particles and must be resolved nonetheless. In the single-fluid (IF) approach, on 

the other hand, the electron momentum equation is used to simplify the electron energy 

equation to a linear convection equation. As a result, the electron momentum equation is 

implicitly satisfied and the electron thermal velocity vanishes. In order to highlight key 

assumptions, the single-fluid, two-temperature model is derived here from the full two-fluid 

description of the plasma. 

2.2.1     Two-fluid equations 

For collision-dominated flows, the heavy particles are well-defined by a single fluid, with 

continuity, momentum, and energy equations, 

12 
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dps 

dt 
+ V • (phUh) = ps 

dp hüh 
dt 

+ V • (phUhüh) + Vph = fieh + riieZi(E + Üh x B) 

8 

di ph [£h+ ^uh • uh PhUh  [ Eh +  yUh • Uh + V•(uhPh) 

Uh • ßeh ~ rueZiÜh • E - V • (KhVTh) - q• 

respectively. Each heavy particle specie s contributes to the total mass density, 

Ph. 
s^=e 

Ps 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

which in this work can be an atom, ion, or electronically-excited level. Thermal conductivity 

is given by K and qf^ denotes energy changes dues to collisional-radiative processes, while 

ß is the momentum transfer function between heavy particles and electrons. 

The continuity, momentum, and energy equations for the electron fluid are given by 

dpeüe 
dt       ^ 

i      yHe^e 

d 

dt 
Pe ee + ^ue • ue ) + v- 

—j + V • (peUe) = Pe 

V • (peÜeüe) + Vpe = phe + nee(E + üe x B) 

peue [ ee + -ue • u + V•(uepe) 

ue • ßhe - neeue • E - V • (ReVTe) - qcf 

(2.21) 

(2.22) 

(2.23) 

respectively.   Here, ßhe is the momentum transfer function between electrons and heavy 

particles which is equal in magnitude but opposite in sign to ßeh- 

The key assumption in the two-temperature model is that both the heavy particle and 

electron bulk velocities can be described by the same velocity, i.e. u « ue « Uh- This 

assumption is a direct consequence of charge neutrality and is valid when considering length 

scales greater than the Debye length. Making use of this condition, the overall continuity 

equation becomes 

dp 

dt 
V •(pu)=0 

13 
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while the heavy-particle and electron momentum equations can be combined into an overall 

momentum equation, 

Hp+V- (puu) + Vp = QE + jc x B, (2.25) 

with the total mass density p = pe+Ph and the the total charge density Q = ene + e^2 niZi- 

Furthermore, the heavy-particle and electron energy equations can be combined into an 

overall energy equation, 

dE -,     - 
— + V • (uH0) + VP = jc-E-V- (RhVTh) - V • («eVTe) - qCR (2.26) 
at 

where E is the total energy, 

E = eh+se + -pu-u (2.27) 

and H0 = E + p is the stagnation enthalpy density. 

2.2.2     Generalized Ohm's law 

Although the assumption of charge neutrality in the 2T model precludes the possibility of 

convection currents, conduction currents can still be present due to variations in the specie 

drift velocities. As derived from the 2F equations, the generalized Ohm's law provides an 

expression for the conduction current [109], 

jc = a{E + uxB+ —— -  } . (2.28) 
nee nee 

2.2.3     Electron fluid 

Note that the electron energy equation is a function of the electron pressure pe. The eigen- 

values of such a system includes the thermal sound speed of the electron gas which is pro- 

hibitively stiff. It is therefore necessary to remove this dependency and reduce the electron 

energy equation to a linear advection equation in eigenspace. We begin this process by first 

recasting the electron continuity and momentum equations in non-conservative form which 

will then be used to simplify the electron energy equation.   Furthermore, electromagnetic 
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effects will be neglected. 

Conservation of electron mass 

The electron continuity equation in divergence form is given by Eq. (2.21), 

^ + V • (Peu) = pe (2.29) 
ot 

where pe is the rate of change of electron density due to ionization and recombination. 

Expanding the divergence term, 

—f +Ü- Vpe + peV • U = pe, (2.30) 
ot 

the non-conservative form is found to be 

Dt 

with the material derivative defined as 

1  /9eV -u = pe (2-31) 

D        d 
— = — +M-V. (2.32) 
Dt      dt y       ' 

Conservation of electron momentum 

The momentum equation in divergence form is given by 

—£— + V • (peUu) + Vpe = ßhe- (2.33) 
Ot 

where ße is the momentum transfer function between the electron and heavy species. Sub- 

stitution into the momentum equation and carrying out the indicated operations on the 

LHS yields 

Pe^rr +Ü-rr + Pe{u-V)u + vSI • (peÜ) + Vpe = ßhe (2.34) ot        ot 

in which the second and fourth terms are the convective terms of the continuity equation, 

Eq. (2.31), yielding 
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Du _ 
PeJ^I + VPe = fJ-he ~ PeU. (2.35) 

Conservation of electron energy 

The energy equation is represented in divergence form as 

d 

dt 
Pe ee + -Ü- u j + V- Pe ee + -u • u \ u + V • (uPe) 

= uhe • fi - V • qe - qCR    (2.36) 

where V • qe is the electron heat condution. Separating the internal energy from the kinetic 

energy, for which the indicated operations are carried out, 

9 ,       .     _   ,        ^      1, -,   -~ dpe      1     d 
— (pe£e) + V • {peeeu) + -{u • u)— + ^Pe-^(u • u) 

+ -peu • V(u • u) + -(u • u)V • (peu) +peV • u + u • Vpe 

uhe • ß - V • qe - qCR    (2.37) 

and upon regrouping terms, 

3 1 
TJ: (pe£e) + V • (pe£eu) + -{u-u) 

dpe 

dt 
+ V•(peu) + 2PelTt^U'U' +U'^Pe +PeV -U 

= uhe • fi - V • qe - qca    (2.38) 

and noting that 

1      D . _   _.       _       Du 
— pP (U • U) = U • pe  
T   DV        ' h   Dt 
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d l 
IT (Pe£e) + V • (pe£eu) + - {u • u) 

df>e 

dt 
+ V • {peÜ) 

Du      „ 
Pe — 1" "De PeV • U 

Uhe- M - V • <fe - gCR    (2.39) 

it is found that the third and fourth terms on the LHS of Eq. (2.39) contain expressions 

involving the continuity and momentum equations, (2.29) and (2.35), respectively. Making 

the appropriate substitutions, the energy equation reduces to 

d 

di (Pe£e) + V • (peeeÜ) = -peV • U- (2.40) 

where 

^ = 7,Peü-ü-Vqe -qCR (2.41) 

in which the second term has been obtained under the assumption, Ve 3> u. 

The result is that the electron energy equation has been reduced to a linear convection 

equation, for which the electron sound speed does not play a role. The trade-off, however, 

is that the source term containing the velocity divergence peV • ü is in non-conservative 

form, and may present severe numerical difficulties where the flow gradients are not resolved, 

degrading solutions at shocks and other discontinuities. A solution to this problem is possible 

and was first presented in [15]. Expressing the LHS of Eq. (2.40) in non-conservative form 

with the aid of Eq. (2.31), 

Pe-fif + PeV • U = UJ - peEe (2.42) 

and noting that the from the continuity equation Eq. (2.31), 

^     -, DPe 
V • U = -ve-fZ- +Vepe 

Dve 
=      Pe^+VePe (2.43) 
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where ve is the specific electronic volume, the velocity divergence term can be eliminated 

from Eq. (2.42), yielding 

D£e    , DVe • • Pe  • ,„   ... Pe-f^r + PePe-^rr = u- £epe pe (2.44) 
Dt Dt pe 

The LHS of Eq. (2.44) can be related to the entropy through the 1st law of thermodynamics 

in advection form, namely 

Dee   , Dve Dse 
Pe^+P^^ = P^^ (2'45) 

resulting in 

Dse 
peTe—j- =d> - pehe, (2.46) 

•pe/pe is the specific electronic enthalpy. Dividing through by Te, 

Dse       1 „ , 
pe ~m = Ye

{Co ~ pehe) (2'47) 

and adding the continuity equation Eq. (2.31) with a factor se, 

df>e 

_ dt 

the conservative formulation is obtained for pese 

dse _ 
pe—— + peU- Vse + Se at dt + V' ^Pe® ~ pt 

T, 
(w - Pehe) (2.48) 

»e e + V • (pe3eu) = —-{CJ - pehe) + pe3e (2.49) 

This form of the energy equation is free of any non-conservative spatial operators and so is 

best-suited for shock-capturing schemes. The electron entropy function is given by the ideal 

gas isentropic relation, 

se = -^ = constant (2.50) 
Pe 

since electrons lack an internal structure and the assumption of constant specific heats is 

valid. 
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The electron entropy above presents a problem as it is ill-defined for cases in which the 

ionization fraction tends to zero. This can be remedied by introducing a pseudo-entropy 

variable defined as 

se = j± (2.51) 

which is well-defined for all ionization fractions. Since the electron gas is calorically-perfect, 

so that sP can also be defined as 

Pe = (7e - l)peee, (2.52) 

Se^(7e-1)^ (2.53) 

The replacement of pese with pse as a conserved variable is trivial as can be seen when 

inserted into the convection equation, (and can be verified by direct calculation) 

^+v.<*q     »(* W(:£T« at yr    '    at Vp7e"V        Vp7e_1 

{l-^m + p^^^ + u-v7^ + 7^v- 
n -.Pe Dp     7e-l (dEe 

7e~l. 
 -W 
pTe-1 

(2.54) 

where the overall momentum equation, Dp/Dt + pS7 • u = 0, has been used as well as 

Eq. (2.40) in conjunction with Eq. (2.52). Note that in addition to being better conditioned, 

Eq. (2.54) has the advantage of also being a simpler expression than Eq. (2.49). This results 

from the fact that dp = 0 while dpe ^ 0. Thus if the source terms are computed with pee 

as the conservative variable, an update to the electronic entropy function may be obtained 

after the source term is multiplied by the factor (p/e — l)/p7e_1. This result is verified by 

differentiating Eq. (2.53), i.e. 
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d(pse) 
(le ~ 1) 

—d(peee) (2.55) 

2.2.4     Thermophysical properties 

With the electron entropy equation, Eq. (2.54), combined with the bulk equations of motion 

and total energy, the two-temperature model takes the following form, 

\ 

Q 

M (»\ '             PlVn 

Pn Pn PnVn 

pu 
,   v = 

U 
F   — 

puvn + nxp 

pv V pvvn + nyp 

pw w pwvn + nzp 

E p (E+p)vn 

[    PSe    , {    Pe     I {           PSeVn 

(2.56) 

/ 

In order to close the 2T system, the thermal pressure must be related to the conserved 

quantities via appropriate equations of state (EOS). The relations are paramount in de- 

termining the differential relations that are necessary to develop the flux Jacobian matrix 

and corresponding eigensystem. First, the partial derivatives of the total and electron ther- 

mal pressures with respect to the conserved quantities are derived, followed by the partial 

derivatives of the total energy and electron entropy function with respect to the primitive 

variables. 

Pressure derivatives 

The plasma is assumed to behave as an ideal gas in which case an exact expression for the 

total pressure of all species is obtained from Dalton's law of partial pressures, 

p = Ph+Pe, (2.57) 

where the heavy particles obey a thermally-perfect EOS, 
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Ph = Th^2PaRa, (2.58) 

while a direct relationship between the electron pressure and entropy function has previously 

been defined (cf. Eq. (2.51)), giving 

Pe = SeP^-\ (2.59) 

Differentiating Eqs. (2.58) and (2.59), 

dPh = dTh Y, PsRs +ThY Rsdps (2.60) 

dPe = p''-1dSB + (7e - 1)—dp, (2.61) 
P 

and combining with Eq. (2.57), 

dp = dTh J2 psRs +ThY^ Rsdps + P^dSe + (7e - l)^dp, (2.62) 

an expression for the differential pressure is obtained. While the electron pressure has been 

expressed solely in terms of the conserved quantities, the heavy species contain a temperature 

dependence, which must be expressed in terms of the energy—a conservative variable. The 

total energy is expressed as the sum of the specie internal energies, kinetic energy, and, in 

the presence of magnetic fields, the magnetic pressure. 

Em • fh      B • B , 
pses + peee + —— + —  (2.63) 

Zp ZLL0 

Since the electrons lack an internal structure, the electron fluid obeys a calorically-perfect 

EOS, permitting a direct relationship between the electron internal energy and pressure, 

PeSe =  -^T, (2.64) 

which, in combination with Eq. (2.63), gives 
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E = ^2 pses 
s^e 

m • m      B • B 

7e - 1 2p 2p0 

Differentiating this expression, 

(2.65) 

dE = ^^ Psdzs + ^ £sdps 

s^e s^e 

 h u • dm u • udp H B • dB, (2.66) 
Je ~ 1 2 fjL0 

and noting that for the (thermaily-perfect) heavy species, 

(des Cv,s=f(T) 

\ öl fr J ideal gas 

the desired differential form of T^ is found to be 

des = CedTh. (2.67) 

dTh 
1 

J2 Pscv,. 
s^e 

dE H—u • üdp — u • dm B • dB — }   £sdp 
2 po ^ 

dpe 

s=£e 
Je 

(2.68) 

Inserting Eq. (2.68) into (2.62) and again applying (2.61), the expression for the differential 

pressure can finally be expressed entirely in terms of the conserved quantity differentials, 

dp = (jh ~ 1) 
1-   -.        -    .-       1   -    .-     v^      . p1'-1 

dE + —u • udp — u • dm B • dB — >   £sdp. 
Po s^e Je -l 

dSK 

+ ThY] RsdPs + P^-xdSe + (7e - jhy-dp    (2.69) 
— P s^e ' 

where 

7/j-l 

E PsRs 
(2.70) 

From Eqs. (2.61) and (2.69), the resulting pressure derivatives can now be defined. 

dp\ 

dE) 
Jh - 1 (2.71) 
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Ps 
dp 

o^-1    1 
q^Se 

±     III 

PB 

dp\ 

7e"l 

fdp\ 

\dBj 
<lh -1) 

q^B 

B 

Mo 

Pn 

P, 

^—) ={le-lh)— + ^{lh-t)u-U 

dp 
P«^e dp s¥=e / qiLPs 

PPc ~ (ih ~ l)ea + 

Pn aP; 
9T^P 

P-Pe 

P 

(2.72) 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

(2.77) 

Energy derivatives 

Similar to the approach taken in the previous section, we can find the partial derivatives 

of the total energy and electron entropy function with respect to the primitive variables. 

Contrary to inserting the expression found for dT^ from the energy equation into the pressure 

equation, the pressure equation is rearranged to find dTh which is then inserted into the 

energy equation. Differentiating the energy equation with respect to the primitive variables 

(ps,u, B,p,pe), the following expression is obtained. 

dE = dTh /   PsCv s + /   £sdps H \~ pu • du -\—u • udp -\ B • dB (2.78) 
j j 7e - 1 2 fl0 

Rearranging the primitive variable equivalent of Eq. (2.62), 

dTh 

and inserting into Eq. (2.78), 

1 

J2 PsRs 
dp-Th^2,Rsdps - dpe (2.79) 
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dE  : 
lh  ~   1 

dp - Tfe y^ Asdps - dpe 

Pe    + pÜ-du+-Ü-Üdp-\ B-dB,    (2.80) 
7e - 1 2 ^o 

an expression for the differential energy is obtained from which the partial derivatives of the 

total energy with respect to the primitive variables are defined. 

P      \dpj,        lh-l 

EPr = (^—] 
1 

\9pejv^ps 7e"l lh-l 

fdE\ 

ES 

dE 

dBjv^S      Mo 
-B 

fdE\ 1^   _ 

\dpeJv^Pe      2 

E„ 
dE 

Electron pressure and entropy function derivatives 

The electron pressure derivatives, 

EPc + £s - 7 —— 
(lh ~ l)pa 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

P, eS, dSe e / g^se 

Op, 

-1  =  Pe 

Pe 

ft. ä I '$0   = p. 
"P-\  dp)c 

p _ dpe\ 
drh J 

(2.87) 

(2.88) 

(2.89) 

(2.90) 
q^rh 
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'•••(sL- (2-9i) 

p—(^L-° (2-92) 

and entropy function derivatives, 

^•(^L-'1-^-«1-^*       (2-93) 

^ = Uf = S°P. (Z94) 

^•,-(^) =/>1-' (2-95) 
^Pe/« 

^-(t)^-0 (2.96) 

5, r7 ^ ('^ = 0 (2.97) 

S.pS[-)^ = 0 (2.98) 

are defined via Eq. (2.6f). 

2.2.5     Two-temperature eigensystem 

With the thermodynamics properties derived, it is now possible to derive the eigensystem 

for the two-temperature model. The complete 2T eigensystem is given in Appendix A. 

2.3     Two-Temperature MHD Model 

With the presence of electrically charged species, the fluid has the ability to conduct elec- 

tricity, and in the presence of electromagnetic helds, body forces which act on the fluid will 

be created and energy will be exchanged within the fluid. In order to take these effects into 

account, the bi-temperature fluid transport equations Eqs. (2.1) and (2.56) and must be 

coupled with Maxwell's equations, 
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V -E 

V -B = 0 

V x E 
dB 

~dt 

V x B = fx0J + p0£0- 
dE 

dt 

(2.99) 

(2.100) 

(2.101) 

(2.102) 

The resulting two-temperature MHD equations can be expressed in the following vector 

form ([65],[15]), 

Q 

'»\ 

Pn 

pu 

pv 

pw 

B,r 

B .'/ 

Bz 

E 

V 

<»^ 

Pn 

U 

V 

w 

B 

B. 

P 

V Pe ) 

J>l 

Fn 

\   Pse   J \   Pe    J \ 

where p0 is the sum of the thermal and magnetic pressures, 

P\vn 

Pnvn 

puvn + nxpQ - BxBn/pQ 

pvvn + nyp0 - ByBn/p0 

pwvn + nzp0 - BzBn/p,0 

vnBx - uBn 

vnBy - vBn 

vnBz - wBn 

vn(E +p0) - Bn(v • B)/fia 

(2.103) 

Po =P + 
B • B 

2pa 

and the total energy is given by 

(2.104) 

E = ^pses + peee + 
s^e 

rh • m      B • B 

2p 1p0 

(2.105) 
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2.4     Eigensystem 

As done for the two-temperature hydrodynamic equations, the 2T MHD eigensystem is 

presented in Appendix A. 

27 

E-47 



CHAPTER 3 

NUMERICAL FORMULATION 

With the governing equations detailed in the previous chapter, attention is here turned 

to developing a suitable numerical formulation. In particular, the discretization approach 

resulting from a finite-volume (FV) formulation is described. Focus will then be extended to 

the hyperbolic convection terms and the shock-capturing method will be detailed. Solution 

techniques for the diffusion terms and chemical kinetics will be described in Chapters 7 and 

9, respectively. 

3.1     Finite-volume formulation 

While their derivation was carried out in divergence form, the governing equation are here 

cast into integral form to ensure a conservative discretization. From Reynold's transport 

theorem, 

/        QdV- I        QdV + I     I     n-FdSdt =   I      f     tldVdt, (3.1) 
JV(tn) JV(ti) JU        JS(t) Jt,        JV(t) 

Jf'ti       /> _ rt-2 

<b     n-FdSdt=  \ 
*i    JS(t) Jtx    JV(t) 

the integral form of the governing equations is obtained. Defining 

Fn=n-F = nxFx + nyFy + nzFz (3.2) 

as the flux normal to the surface described by the unit vector, n, and assuming that all 

variables are continuous in time, Eq. 3.1 reduces to 

— /  QdV + I FndS =  I  tldV. (3.3) 
dt Jv Js Jv 

Introducing the volume-average quantities, 
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Q = ^ / QdV,    h = i / JW, (3.4) 

further simplification can be made, yielding 

dQ       1 

dt       V _ls 

FndS = n, (3.5) 

in which the bars have been dropped with the implication that all quantities are volume 

averages. Equation (3.5) serves as the basis for finite-volume (FV) schemes adopted in this 

work. 

Before proceeding, Eq. (3.5) is operator split such that the contribution of the source 

terms to the change in the conserved quantities will be treated independently of the contri- 

bution of the convective terms. The splitting results in two equations, 

dQ 

dt 

If dQ 
FndS    and 

V  Jg dt 
n, (3.6) 

the combination of which yields the total change in Q, 

dQ _ dQ 

~dt  ~ ~dt 
+ dQ 

conv dt 

(3.7) 

3.2     Semi-discete approach 

Although a number of techniques exist to discretize Eq. (3.5), the one adopted here is a 

term-by-term treatment, in which the spatial operator is discretized first followed by the 

temporal derivative. Known as the semi-discrete approach, it is straight-forward, allowing 

flexibility. We begin by discretizing the spatial domain into .ZV-sided polyhedra1 which we 

refer to here as cells, such that the surface integral can be replaced by the summation, 

N 

FndS^Y^FsAs (3.8) 
S s=l 

where Fs is the flux normal to surface s and As is the area of surface s. This results in a 

coupled system of ODE's of the form 

Polyhedra in 3D, polygons in 2D, etc. 
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dQ _ 

dt V 
l7?Y.F^ (3-9) 

for all cells in the domain. The flux function Fs at the surface between two cells, L and R, 

may be approximated via a numerical flux function, 

Fs = ^(FL+FR)-$, (3.10) 

which is a combination of a nondissipative centered approximation and a numerical diffusion 

function, $. The numerical flux function can be tailored depending on the form of $. In 

particular, an upwind bias may be introduced by letting $ take the form 

®=\\AS\{QR-QL) (3.11) 

with the flux Jacobian as defined through the diagonalization 

\AS\=R\A\L (3.12) 

as detailed in Chapter 2. The exact form of \AS\ follows from the necessary condition for 

pure upwinding, 

\FL    if |A| = A 
Fs=l , (3.13) 

\FR    if |A| = -A 

which can be achieved only in the case that As from Eq. (3.11) satisfies 

FR-FL = AS(QR-QL), (3.14) 

the solution of which yields the Roe-average states [96]. Such a linearization of the flux 

Jacobian also satisfies the Rankine-Hugoniot jump conditions and is able to capture sta- 

tionary discontinuities exactly. Note that the Roe-average values are obtainable for the 

bi-temperature gasdynamic equations in the case that all species can be described by a 

calorically-ideal EOS. The bi-temperature MHD equations are further restricted to poly- 

tropic species with an adiabatic exponent of 2 [17], which consequently represents a phys- 
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ically meaningless state. However, approximations are available and can have a negligible 

effect as determined through numerical experiments. 

As with all numerical flux functions, the upwind approximation does have its share of 

shortcomings, requiring special attention under certain flow conditions. Although details 

are not provided here, stabilizing techniques similar to the approaches found in [25], [92], 

and [47] have been implemented in this work. 

3.3     Time-Marching 

Once the spatial fluxes have been evaluated, the conserved quantities can be integrated in 

time via an appropriate time-marching method. While implicit integration techniques will 

be applied to the various source terms (c.f. Chapters 7 and 9), integration of the convective 

terms has been limited to explicit methods. Several such time-marching methods have been 

implemented and tested, including multi-step and predictor-corrector schemes. Introducing 

the operator L(Q) = — 1/V^23 FSAS, Eq. (3.1) can be expressed as 

^ = L(Q). (3.15) 

Integration from discrete time levels n to n + 1, 

t„+i 
(dQ = L(Q)dt), (3.16) 

can be approximated in a number of ways, several of which are provided as follows. 

Explicit Euler 

The explicit Euler scheme given by 

gn+i = Q« + AtL(Qn) (3.17) 

is perhaps the simplest integration techniques, resulting in global first-order accuracy. 

Adams-Bashforth 

The second-order Adams-Bashforth (AB2) scheme is given by 
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Qn+1 = Qn - ^AtL(3Qn - Q"-1) (3.18) 

can provide better stability than the Euler explicit method, especially in convection-dominated 

problems. The AB2 scheme requires the storage of the solution at two distinct time levels, 

n and n+1. One possible implementation approach is to store Qn explicitly, while Qn~l is 

stored implicitly in the linear combination, 3Q" — Q"_1. This can present advantages over 

storing as the fluxes must be evaluated for 3Qn — Q•-1 as opposed to Qn~l. 

Runge-Kutta 

Runge-Kutta schemes are of the predictor-corrector type which require multiple evaluations 

of the operator L per time step. This may be undesirable in a parallel implementation as 

each evaluation of L requires communication between blocks in order to update information 

at the boundaries. The second-order variant (RK2), also known as modified Euler, is given 

below. 

\n+l Qn + AtL(Qn), (3.19a) 

T+1 =Qn + -AtL(Qn + Qn+1). (3.19b) 

(3.19c) 
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CHAPTER 4 

RECONSTRUCTION 

Accurate solution of the transport equations is necessary in order to reproduce such complex 

wave structures such as those seen in the argon shock tube results as discussed in Chapter 

1. In particular, the ionization begins with a small but significant number of priming 

electrons just after the compression shock. The convection of these priming electrons and 

excited species farther upstream of the shock is determined by the evaluation of the flux 

F in Eq. (2.1). A low-order evaluation of the flux may lead to excessive diffusion of these 

species, resulting in a delay in the electron avalanche, thereby altering the induction length. 

Therefore it is desirable to have an advection scheme which introduces as minimal amount 

of diffusion as possible, while maintaining a numerically stable and oscillation-free solution. 

The approach taken here begins with the finite-volume method described in the previous 

chapter and proceeds via the steps outlined in Figure 4.1. In the standard finite-volume 

approach, the conservative variables are stored as averaged values over each computational 

cell. These values are then used to reconstruct higher-order representations based on poly- 

nomial, logarithmic, and other such approximations. The reconstruction determines the 

overall accuracy of the scheme and therefore is a key element of the numerical transport 

process. The principle function of the reconstruction scheme is to obtain accurate values at 

the interfaces between cells. These values, combined with an appropriate Riemann solver, 

are used to evolve the variables in characteristic phase-space, giving a flux quantity at each 

cell interface. Once the flux values have been determined, the variables are then projected 

to the new time level via a time-marching scheme. 

The purpose of the chapter is to describe the reconstruction scheme to be used in 

the present research.  A one-dimensional formulation is presented first, followed by a two- 
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J* 

/ \ 

1^ 
u-a u+a 

Figure 4.1: Numerical approach: projection, reconstruction, and evolution (taken from [89]). 

dimensional extension based on piecewise-quadric surfaces. Formulated from the method 

of undetermined coefficients, the proposed reconstruction scheme can provide true multi- 

dimensional reconstruction on arbitrary meshes. Implementation of boundary conditions is 

briefly considered along with limiters. 

4.1     One-dimensional formulation 

As applied to a three-point stencil from a ID finite-volume discretization, the method of 

undetermined coefficients seeks a fit of the cell average values to a quadratic polynomial 

which defines the profile of the parabola, 

u{x) = C\ + C-lX + C3X (4.1) 

as determined by the following conditions, 
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^-1/2 - rij hi-l Cj-1/2 
xj+l/2 Lj+i/2 -r nj+i 

Figure 4.2: One-dimensional parabolic interpolation on a non-uniform mesh. 

I rxj+1/2+h^ 

hj+l Jxj+1/2 

I     rxj+i/2 

3   Jxj-l/2 
I       rxj-i/2 

u(x) dx = Uj+i 

u(x) dx = üj 

hi-i J-l   Jxj_1/2-hj-1 

u(x) dx = Uj ;-l> 

(4.2a) 

(4.2b) 

(4.2c) 

where hj is the width of cell j as illustrated in Figure 4.1.    Introducing normalization 

parameters based on the ratio of the left and right cell widths w.r.t. that of the center cell, 

ri-i 
hi-i ri+i 

the system can be rewritten as 
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1 /-l+2r3-+i 

2ri+l 7l 
"(0   dC = Wj + 1 

2 7-i 
u(0 d£ = uj 

2r; J'-1   J-1-2TJ-1 
w(0 d£ = Wj-i 

(4.3a) 

(4.3b) 

(4.3c) 

with corresponding polynomial, w(£) = ci + C2^ + C3^2.  This leads to the following linear 

system which must be solved for each cell Ij. 

1    -l-r^a     l + 2rJ-_1 + fr=_1 

10 i c2      =      üj- (4.4) 

1        1 + rj+1     1 + 2ri+1 + fr2 

The first term on the LHS is the corresponding Vandermonde coefficient matrix, V, which 

can easily be inverted to obtain 

-| 
C\ Uj-i 

C2 
= Uj 

C3 uj+1 

1+r-j + i 
3|V| 

1         2+rj-1+rj+1 
1                  3\V\ 3|V| 

r-l _ 2(l+^+i)(l+2rJ + 1) •2(rj-l-rj + i)(3+2rj-1+2rj+1) 2(l+rJ_1)(l+2rJ-. -i) 
3 3|V| 3\V\ 3|V| 

1+r-j + i 2+rJ-_i+rJ-+1 1+^-1 
\V\ \V\ 1*1 

(4.5) 

with determinant, 

\V\ = -(1 + r^iXl + rj+1)(l + rj_! + rJ+1). (4.6) 

Obtaining the coefficients of the reconstruction polynomial then becomes a simple matrix- 

vector multiplication, 

(4.7) 

An example reconstruction polynomial obtained from Eq. (4.7) is plotted in figure 4.f. 

Since constructing the fluxes at the cell interfaces (cf. Eq. (3.10)) is of primary concern, 
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the value of the interpolated polynomial at the locations Uj±n/2, n = 1, 2,... is desired. In 

the normalized reference frame, the values of the polynomial at the faces of cell j are defined 

by 

UL,j  = Uj-1/2  = U(-1)  = Ci - C2 + C3, 

URJ = Wj+1/2 = "(+1) = ci + c2 + c3, 

(4.8) 

(4.9) 

where u^j is the interpolated value at the left cell interface, resulting from the interpolation 

based in cell j, while URJ is the interpolated value at the right cell interface, resulting from 

the interpolation based in cell j. Vectorization is accomplished via 

1    1    1 Vi 

< 1    -1    1 vf1 

u
j-i 

üj+1 

üj 

Uniform mesh 

In the case of uniform mesh spacing, the Vandermonde matrix reduces to 

V 

yielding left and right states, 

-2 13 
3 

0 1 
3 

2 13 
3 

v-1 

1 
24 

13 
12 

1 
24 

1 
4 0 1 

4 

1 1 
4 

1 
8 

(4.10) 

(4.11) 

(4.12) 

uL = -(2uj_i + 5UJ - Uj+i), 

MR = ß(2öj+i + 5üj - üj_i). 

(4.13) 

(4.14) 
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I A, \A3 \ |03 x 04 

||01 x02| ||02 x 031 

Figure 4.3: General area representation based on arbitrary point. Shaded regions are abso- 
lute values of the areas A\ ... A4. 

This formulation is equivalent to the fourth scheme of van Leer (cf. [115, 54]). 

4.2     Two-dimensional formulation 

The method of undetermined coefficients is easily generalized to 2D. The second-order poly- 

nomial which defines a quadric paraboloid in two dimensions is given by 

u(x, y) = ci + c2x + c3y + c4x
2 + c5y

2 + c6xy. (4.15) 

To determine the coefficients, this polynomial is integrated over each cell in the stencil. 

1 
u(x,y) dx dy = Uij (4.16) 

To evaluate the integral, we rely on a coordinate transformation from the physical to the 

natural domain using isoparametric elements defined by bi-linear shape functions as given 

in Appendix B. The integral in Eq. (4.16) is transformed to 

1 

A, 

1    r\ 

i,j J-\ J-l 
u(^V)\Ji,j\ dt dV = ui,j 

with associated polynomial, 

(4.17) 

u(£, v) = ci + C2C + C3V + Cii   + c5rj   + c6£r) (4.18) 

Integration of Eq. (4.17) with Eq. 4.18 yields 

'• j 

where 

fc=i 
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Ay 

Ar 

Figure 4.4: Two-dimensional interpolation stencil. 

v1 = l 

v2 

V3 

V4 

V5 

v6 

TTT— ^2 An(xn + Xn+1) 

1 
4 

TTT— ^2 An(yn + yn+1) 
l'J  n=\ 

1 
4 

ä~. X] ^n [x«+x«+i+ (Xn+x«+i)2] 
l,3 n=l 

1     4 

T7T ^2 A• [Vn + 2/n+l + (Vn + 2/n+l)2] 
l'J  n=l 

X 4 

4  X] ^• [Xn2/n + Xn+iyn+l + (xn + X„+i)(j/„ + Vn+l) 

VIA 

VIA 

VIA 

with "^2 An being equivalent to the cell area, 

Aij = i(01 x 02) + |(02 x 03) + |(03 x 04) + ±(04 x 01) 

(4.20a) 

(4.20b) 

(4.20c) 

(4.20d) 

(4.20e) 

(4.20f) 

(4.21) 

Ai A2 A3 A4 

A geometric description of A is provided in Figure 4.2 which can be determined from any 

arbitrary point PQ. 

In order to establish a well-defined system, a stencil of six cells is necessary—one cell 

for each coefficient. However, in order to preserve symmetry on a logically-indexed mesh, a 

nine cell stencil as illustrated in Figure 4.4 is chosen, resulting in the linear system, 
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VlA-l,j-l      "2,i-l,j-l      ' ' '       v6,i-l,j-l 

"1, "2, ve,i 

vl,i+l,j + l      v2,i+l,j + l 

*i,3 

W6,i+l,j + l Mi-lj + 1 
C6 

ui,j + l 

Ui+lJ + 1 

The above system is over-determined, which can be solved using a least-squares formulation, 

C3 

c4 

<~6 

ui-l,j-l 

Ui,j-1 

Ui+lJ-1 

Uj (4.22) 

l^c = u 

VTDVc = VTDu 

c= (VTDV)-1VTDu 

(4.23) 

(4.24) 

(4.25) 

where, D is a diagonal matrix of weights to apply to each cell in the stencil. The elements 

of D have been chosen such that the diagonal cells of the stencil are given minimal weight, 

while maintaining a well-conditioned system. Once the coefficients have been determined, 

the quadric surface results from Eq. 4.18. A generic example is provided in Figure 4.5. 

4.2.1     Flux Calculation 

Once the quadric surface has been determined, evaluation of the interface values becomes a 

simple line integral of the parabolic function resulting from the intersection of the quadric 

surface with the cell interface. Since the parabolas are determined using second-order poly- 

nomials, the integrals can be evaluated exactly using three-point Gaussian quadratures. 

4.3     Limiters 

When applied to highly nonlinear wave phenomena such as shocks, the interpolation scheme 

will inherently develop oscillations leading to catastrophic failure of the reconstruction. To 
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-3       -3 

Figure 4.5: Two-dimensional quadric surface interpolation on a uniform mesh. 

remedy this, the monotonicity-preserving (MP) limiters of Suresh and Huynh [107] have 

been implemented in the reconstruction. MP limiters enforce monotonicity in the recon- 

struction scheme by modifying interpolated point values at cell interfaces. As applied to the 

ID interpolation on a uniform mesh, the reconstructed value u^ in Eq. (4.13) is modified 

according to 

UL <— median(u^, Uj, u     ) (4.26) 

with u MP - minmod[wj_|_i — Uj, a(uj — Uj_i)]. The MP limiter has been implemented 

in the current work with a = 2. 
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CHAPTER 5 

NUMERICAL STABILITY 

The reconstruction procedure detailed in the previous chapter is just one component of the 

semi-discrete approach. In order to complete the numerical convection scheme, the recon- 

struction must be combined with an appropriate time-marching method. The suitability of 

the integration scheme is dependent upon the spatial discretization, making it necessary to 

analyze the numerical scheme as a whole. In general it must determined if the given scheme 

is consistent with the physical model and under what conditions it is stable—only then can 

convergence be ensured. 

In particular, the stability analysis performed here will be based on discretization of the 

model linear advection equation, 

du        du        du 

with a constant advection speed a > 0. Consistent with the semi-discrete approach, the 

spatial derivatives of Eq. (5.1) will first be discretized, 

ft=Lu, (5.2) 

requiring a vectorization of the reconstruction scheme. It is important to note that when 

combined with the monotonicity-preserving limiters discussed in Chapter 4 Section 4.3, the 

reconstruction scheme cannot be linearized. However, the base interpolation scheme will be 

considered independently of the limiters, resulting in two coupled sets of ODE's that will 

be analyzed separately. The ODE's will then be discretized in time yielding the desired set 

of OAE's, 
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rfn+1 U SvT. (5.3) 

to advance the solution from time level n to n + 1. The conditions for stability of Eq. 5.3 

as based on the Lax-Richtmyer theorem require the eigenvalue of maximum magnitude of 

S be bounded by the unit circle, 

O-max < 1. (5.4) 

In what follows, the form of L will be determined along with its eigenvalues, A. Making use 

of the so-called A — a relation [68], the eigenvalues of S will be derived without the explicit 

form of S. To facilitate analysis, all discretizations are performed on equispaced Cartesian 

grids with periodic boundary conditions. 

5.1     Finite-difference approximation 

A finite-difference (FD) approximation to the spatial derivatives of Eq. (5.1) can be made 

based on the reconstruction procedure of the previous chapter. In particular, an upwind ap- 

proximation results from differencing the interpolated cell interface values given by Eq. 4.13, 

(aw = URJ ~ URJ~1 + 0(Ax?) (5-5) 
3 

1 

6Ax 
1 

6Ax 

[2UJ+I + 5UJ — Uj-i — {2UJ + 5«j_i — Uj-2)] + 0(Ax') (5.6) 

(2üj+i + 3üj — 6üj-i + Ü7-2) + 0(Ax'). (5-7) 

The truncated term in Eq. 5.7 can be found from Fourier error analysis by comparing the 

exact derivative of u = elKX, 

-^- = «e«, (5.8) 

with the approximate derivate of discrete function Uj = e
ZKJ     , 
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(öxe
iKJAx) 

2£iKAx(j+l) _|_ ^eiKAx(j) _ QeiK,Ax(j-l) _|_ eiK,Ax(j-2) 

'  = 6A~C 
(p—ix>2A.x   c,-kAa; _i_ Q _i_ opiK>A.x\piKjA.x 

6Ä~c ' 

(5.9) 

(5.10) 

where K is the modified wave number. Comparing the right-hand sides of Eqs. 5.8 and 5.10 

yields a modified wave number, 

3 + cos 2K AX — 4 cos KAX + i(8 sin KAX — sin 2K Ax) 

6iAx 
(5.11) 

that approximates the exact wave number to third order accuracy as revealed by the series 

expansion of Eq. 5.11, 

(5.12) 
12/ 

confirming third-order accuracy of Eq. (5.7). As such, the scheme including monotonicity- 

preserving limiters shall be referred to as MP3. 

The modified wave number along with the modified phase speed, a* ja = K*/K, are plot- 

ted in Figure 5.1. The third-order scheme requires approximately 19 points per wavelength 

(PPW) to maintain an error in phase speed of less than 0.1% or 10 PPW for an error of less 

than 1%. 

5.2     ID stability 

Spatial discretization of the model equation using Eq. (5.7) on an uniform ID mesh with M 

cells results in the spatial discretization operator, 

a   1 

A~x"Q 

-3    -2 

6      -3    -2 

-1      6      -3    -2 

-1      6 

-1      6      -3    -2 

-1      6      -3 

(5.13) 
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Figure 5.1: Modified wave number and phase error for 3rd-order backward difference oper- 
ator. 

which may conveniently be expressed in banded matrix notation as 

L=~Bp(M:-1,6,-3,-2,0), 
Ax o 

(5.14) 

in which Bp denotes a periodic banded or circulant matrix.   Because it is circulant, the 

eigenvalues of L can be found from a ID discrete Fourier transform (DFT), 

M-\ 

Xj = £ e-
M'm/%,    j = 0,1,..., M - 1. (5.15) 

The linear operator resulting from the MP limiter is also considered here and is given by 

a   1 

A^6 

-2      5 

-2      5 
(5.16) 

-2      5      -3 

-2      5      -3 

Though not detailed here, its derivation is similar to that of the third-order FD approxima- 

tion. 
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Figure 5.2:   Stability plot for the ID MP3-AB2 scheme with CFL= 0.58.   The 3rd-order 
interpolation is stable (left), while the limiter is not (right). 

2nd-order Adams-Bashforth 

Once the eigenvalues of L have been computed, the eigenvalues of S follow from the A — a 

relation, which are given by 

3        \ 1 
1 + -AAx ) a + -AAx = 0. (5.17) 

for the 2nd-order Adams-Bashforth (AB2) scheme [68]. As a multi-step scheme, AB2 gives 

rise to two cr-eigenvalues for each A-eigenvalue. 

The eigenvalues for the ID AB2-MP3 scheme have been plotted for a CFL number of 

0.58 in Figure 5.2 and for a CFL number of 0.1 in Figure 5.3. The base interpolation 

scheme is clearly stable for CFL= 0.58 as all of the eigenvalues lie within the unit circle in 

the complex plane. The MP limiter function, on the other hand, is not stable at this CFL 

number. Even as the CFL number is decreased to 0.1, the limiter function is still unstable, 

with eigenvalues from the principle cr-root lying outside the unit circle. 

2nd-order Runge-Kutta 

The second-order Runge-Kutta (RK2) scheme is a two-step,  predictor-corrector scheme 

which has one principal a root given by 
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Figure 5.3: Stability plot for the MP3-AB2 scheme with CFL= 0.1. Despite the small 
value of the CFL number, the limiter (right) remains unstable, although mildly so. It is 
interesting to note that the spurious root is stable while the principal root is not. The 
3rd-order interpolation is given on the left. 
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Figure 5.4:   Stability plot for the ID RK2-AB2 scheme with CFL= 0.1.    The 3rd-order 
interpolation is stable (left), while the limiter is not (right). 

a - 1 - AAx - -A2Ax2 = 0. (5.18) 

From Figures 5.4 and 5.5, the base interpolation scheme is stable for CFL= 0.9. As with the 

AB2 scheme, the MP limiter function is not stable, even as the CFL number is decreased 

to 0.1. 
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Figure 5.5: Stability plot of the 3rd-order interpolation scheme with RK2 for CFL= 0.1. 
Despite the small value of the CFL number, the limiter (right) remains unstable, although 
mildly so. The 3rd-order interpolation is given on the left. 

5.3     2D stability 

As applied toanMxM mesh with Ax = Ay and periodic boundary conditions, vectorization 

of the 2D reconstruction scheme results in a M2 x M2 block circulant matrix with circulant 

blocks (BCCB), 

/ 

C 

C0 c\ CM-2 CM-I 

CM-I C0 c\ CM-2 

CM-2 CM-I Co c\ 

\ 

where C M-1 

Ci 

IM, CM-\ — IM, C1 

CM-2    CM-I       CQ 

CM-2    CM-I 

\IM, and 

Co     ) 

(5.19) 

C70 = -Bp(M 1-1,6,-6,-2,0), (5.20) 

for the third-order FD approximation (IM indicates a M x M identity matrix). Diagonal- 

ization of a BCCB is given by ([32]) 
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C=(FM® FM)
_1

A(FM ® FM) (5.21) 

where A is the diagonal matrix of eigenvalues of C and ¥M is the M x M discrete Fourier 

transform (DFT) matrix, 

F M 

1 1 

1       w1 

1       w2 (/• 

1 

WM-1 

2(M-1) (5.22) 

1      U^"1      •••      W(M-1)(M-1) 

where u> = e-
27rVM. The eigenvalues of C can be found from the 2D DFT, 

M-1M-1 
ajk = Z^ £ -2-Kijn/M   -2-Kikm/M l n,m = 0,1,...,M- 1 (5.23) 

n=0  m=0 

where gnm are the elements of matrix G, of which the nth row corresponds to the first row 

of the nth circulant matrix Cn in Eq. 5.19, 

/ 

G 

Co,n Co, 12 CQ,IM 

Ci;ii Cl,12 c1]1M 

0 0 0 

\ 

0 0 

CM-2,11      CM-2,12 

\   CM-1,11      CM-1,12 

0 

CM-2,1M 

CM-I,IM j 

(5.24) 

The matrix operator for the limiter function can be found in a similar manner. 

2nd-order Adams-Bashforth 

The results for the 2D AB2-MP3 scheme plotted in Figures 5.6 and 5.7 indicate that stability 

decreases by a factor of two for all cases as compared with the ID scheme. 
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Figure 5.6:   Stability plot for the 2D AB2-MP3 scheme with CFL= 0.29.   The 3rd-order 
interpolation is stable (left), while the limiter is not (right). 

ö? ö? 

Figure 5.7: Stability plot for the 2D AB2-MP3 scheme with CFL= 0.05. The limiter (right) 
remains unstable at this CFL number. The 3rd-order interpolation is given on the left. 
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Figure 5.8: Stability plot for the 2D RK2-MP3 scheme with CFL= 0.45. 
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Figure 5.9: Stability plot for the 2D RK2-MP3 scheme with CFL= 0.05. The limiter (right) 
remains unstable at this CFL number. The 3rd-order interpolation is given on the left. 

2nd-order Runge-Kutta 

The stability plots for the 2D MP3-RK2 scheme are given in Figures 5.8 and 5.9. As for the 

2D AB2-MP3 scheme, the 2D RK2-MP3 scheme is stable up to only half the value of the 

CFL number as found for its ID counterpart. 

While these results demonstrate a clear advantage of the AB2-MP3 scheme over the 

RK2-MP3 scheme based on the third-order differencing scheme, the results are inconclusive 

with respect to the MP limiters in regards to their stability. This has warranted numerical 
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experiments that have indicated the AB2-MP3 scheme to be more efficient when considering 

multiple factors, including parallelization implementation and communication overhead. As 

such, the AB2-MP3 scheme has been applied to the convective transport equations in the 

current research. 
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CHAPTER 6 

BENCHMARKS 

Benchmarks are essential in validating the performance of the numerical algorithms as ap- 

plied to physical processes under known and controlled conditions. Assembled here is a 

collection of one- and two-dimensional test cases that have been well-documented in the 

literature. All problems have been solved using upwind Riemann solvers and the 3rd-order 

scheme detailed in Chapter 4 to increase accuracy. Problems in gasdynamics are presented 

first followed by two magnetohydrodynamic cases. 

6.1     Woodward-Colella blastwave 

Blastwaves can generally be described as a strong and sudden release of energy, resulting in 

regions characterized by extreme temperatures and pressures. The severity of the conditions 

is further compounded when two blastwaves interact. The reconstruction scheme must 

deal with pressure and temperature jumps of several orders of magnitude while preserving 

monotonicity and preserving critical features. In particular, when the shock fronts of the 

blastwaves interact, the resulting contact discontinuity is difficult to resolve. The initial 

conditions for the left, middle, and right states are given by, 

M (     1      \ f M (       1       \ M (     1     \ 

uL 
= 0 5 UM 

= 0 5 UR = 0 

\PL   ) l103j \PM   J { 10- J [pH   ) l102J 
(6.1) 

for a polytropic gas with an adiabatic exponent of 7/5.  As can be seen in Figure 6.1, the 

middle contact is well resolved by the scheme with the use of a slope-steepening technique 
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Figure 6.1: Numerical solution of Woodward-Colella blastwave problem as computed with 
1600 cells. 
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Figure 6.2: Numerical solution of the Shu-Osher problem as computed with 800 cells, 

similar to that of [25] and [54]. 

6.2     Shu-Osher shock-entropy wave interaction 

The ability of a numerical scheme to resolve smooth flow disturbances is also of concern. 

This becomes especially critical in boundary layers and other highly turbulent regions where 

entropy waves are prevalent. The Shu-Osher problem [104] has extensively been used to 

simulate a shock passing through an entropy disturbance which can be thought of as a one- 

dimensional analog to the shock-vortex interaction problem.  The initial conditions for the 
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left and right states are given by, 

< ^ 3.857143 (   a     \ PR 
( 

2.629369 5 UR = 

,   10.33333   , [pR   ) \ 

l + 0.2sin(5x-25)   » 

(6.2) UL 

y pL J       y lu.aaaaa /        \ PR /       \ i / 

for a polytropic gas with an adiabatic exponent of 7/5.  As can be seen in Figure 6.2, the 

entropy waves are well-defined after compression by the shock. 

6.3     Emery wind tunnel 

Another case popularized by Colella and Woodward [25], this problem has been simulated 

extensively in the literature to test various solvers' ability to properly capture the flow around 

the 90° corner of a forward-facing step. The resultant sonic rarefaction fan emanating from 

this corner flow may be strong enough to produce negative densities if a positivity-preserving 

scheme is not utilized. The standard Harten-type entropy fix [100] is sufficient to ensure 

positivity as well as avoid sonic rarefactions. An key feature of this problem is the Kelvin- 

Helholtz (KH) instabilities which originate at the triple point of the Mach stem. While 

the KH structures themselves are physical in nature, it is how they are initiated that is an 

artifact of the numerical solver. The inability of Riemann solvers to capture slow-moving 

shocks exactly creates oscillations which serve as a forcing function that acts as artificial 

turbulence. These features are purely numerical in nature and result from the inability of 

Riemann solvers to capture slow-moving shocks exactly. Despite artificial dissipation as 

prescribed in [25], the oscillations and subsequent vortices persist. 

The initial conditions are everywhere identical, with a Mach 3 flow described by a poly- 

tropic gas with an adiabatic exponent of 7/5 traversing from the left inlet to the sonic 

outflow boundary at the opposite end. Results are presented in Figures 6.3-6.6 in the 

form of infinite-fringe interferograms and were obtained using a total of 252 computational 

domains, each consisting of 75 x 75 cells for which Ax = Ay. 
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Figure 6.3: Emery solution at t = 1. 

Figure 6.4: Emery solution at t = 2. 

Figure 6.5: Emery solution at t = 3. 
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Figure 6.6: Emery solution at t = 4. 

Figure 6.7: Simulated Schlieren {left) of Schardin's problem as compared with experiment 
{right) from [36]. 

6.4 Schardin's problem 

Schardin's problem involves air flow past a symmetric wedge at Mach 1.3. This problem has 

been simulated using a poly tropic gas with an adiabatic exponent of 7/5 on a mesh with 

400/c cells that included half of the wedge. The numerical Schlieren in Figure 6.7 shows 

excellent agreement with the experimental results. 

6.5 Shock diffraction down a step 

Shock diffraction down a 90° step has been a popular problem for comparing numerical and 

experimental results. This particular problem chosen here is due to Bazhenova [10], involving 

a Mach 5.09 shock. The numerical results presented in Figure 6.8 have been computed 

assuming an adiabatic exponent of 7/5. The numerical results are able to reproduce all of 

the experimental flow features accurately. Soultions were obtained on a 1.2M cell mesh with 
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Figure 6.8: Density plot of a Mach 5.09 shock diffracting down a 90° step. Results (left) 
compare favorably with experimental results [10] and previous numerical simulations [92]. 
The right frame shows the intricate flow field at a much later time. Colormap: pmi„ ^H 

Pmax 

Ax = Ay. 

6.6     Rayleigh-Taylor instability 

Rayleigh-Taylor instability can occur at the interface of two fluids of differing densities if 

the heavier fluid is accelerated into the lighter one. The instabilities are initiated here at a 

contact surface, across which the fluid pressure is constant but mass density is discontinuous. 

The initial conditions are given by 

M / 

UL 

VL 

\PL   ) V 

2 

0 

-0.025 COS(8TTX) 

2y+l 

\ 

(pu) 

( 

UJJ 

vu 

) [pu   ) V 

1 

0 

-0.025a cos(87rx) 

y + 3/2 

(6.3) 

on the domain 0 < x < 1/4, 0 < y < 1 where the subscripts U and L denote the upper 

and lower fluids respectively. The numerical setup here is slightly different from similar RT 

simulations presented in the literature (see [122]), in that the left and right boundaries here 

are periodic, while the top and bottom boundaries are reflecting. The results in Figure 6.6 

show many fine-scale structures emanating from the contact surface. As the flow develops, 
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and mixing increases, Kelvin-Helmholtz instabilities are also apparent as shear layers de- 

velop. While the flow is undoubtedly unstable, it is unclear to what extent, if any, these 

structures are numerical in origin. It has been stated that higher complexity of the fine-scale 

structures is an indication of less diffusive solvers [122], but the work of [98] may suggest 

other influences, including numerical effects (e.g. grid effects). 

6.7 Brio-Wu MHD shocktube 

The Brio-Wu shock tube problem [17] is a magnetohyrdodynamic extension of Sod's gas- 

dynamic problem. Magnetic fields both normal and tangential to the flow generate several 

MHD wave structures, including fast and slow magnetosonic shocks and rarefactions as well 

as a compound wave. This problem demonstrates the true complexity of the fact that the 

waves cannot all be described as strictly being either linearly degenerate or genuinely nonlin- 

ear. From Figure 6.10 it can be seen that the solver has problems capturing the compound 

wave structure as well as the tail of the slow rarefaction wave, typical of compressive limiters. 

Also noteworthy is the ability of the slope-steepening to capture the contact in 2 cells. 

6.8 Orszag-Tang MHD vortex 

When considering MHD problems in more than one spatial dimension, enforcement of V • B 

is no longer automatic and may require special attention. The Orszag-Tang MHD vortex 

is one example of a problem which has been used to test a solvers ability to satisfy the 

divergence-free condition. The solution is obtained on the domain 0<X<1,0<J/<1 with 

the density and pressure initially equal everywhere with values 25/36-7T and 5/12-7T, and the 

velocity and magnetic fields described by [— sin(27ry), sin(27n/)] and [— sin(27ry), sin(47rx)], 

respectively. The magnetic fields specified by the inital conditions are able to twist the 

fluid into a vortical structure via the Lorentz force. The boundary conditions are periodic. 

Critical to this problem is enforcement of the V • B condition as required by the MHD 

equations. While there are several well-known methods for implementing this condition, 

including Hodge projection ([14]), constrained transport ([38]), and the 8-wave formulation 

([87],[86]), the solution presented in Figure 6.11 was obtained without using any of these 

methods. In this particular test case, the standard Roe FDS approximate Riemann solver 
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Figure 6.9: Rayleigh-Taylor instability at three different times as computed on a 400 x 1600 
cell mesh with Ax = Ay. In the third frame, portions of the contact surface have reflected 
from the upper boundary. Colormap: pmin H pmax 
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Figure 6.10: Numerical results for Brio-Wu MHD shocktube as computed with 800 cells. 
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Figure 6.11: Orszag-Tang MHD vortex as computed on an 800x 800 cell mesh with Ax = Ay. 
Colormap: pmin • pmax 
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has been replaced with the highly diffusive HLLE [37] Riemann solver. It is well known 

that errors in the divergence of the magnetic flux density can be artificially diffused away 

[69]. The HLLE solver provides a significant amount of diffusion, effectively stabilizing the 

solution. 
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CHAPTER 7 

DIFFUSION PROCESSES 

It has been shown to be a natural conclusion to separate the physical models based on 

their mathematical classification as being hyperbolic, parabolic, etc. The individual pro- 

cesses resulting from this decomposition are then solved independently of each other using 

the operator splitting technique. In this chapter, attention is shifted from the convective 

terms of the governing equations to the source terms. In particular, diffusion processes are 

parabolic in nature and are considered here. In particular, an implicit solver for electron 

heat conduction is detailed. 

7.1     Governing equations 

Relative to the convective speeds studied in this work, thermal diffusion of the heavy particles 

is negligible. The diffusion speed of electrons on the other hand may be significant as a 

result of their large thermal velocity. As such, all diffusion processes involving electrons 

must be considered. This includes thermal diffusion, the governing equations of which may 

be expressed as a finite-volume discretization, 

^ = lyFnAs (7.i) 
s 

with the flux Fng normal to cell interface s given by 

ÖT 
Fns=ns— (7.2) 

dns 

with KS being the scalar thermal conductivity taken at s. The difference is approximated 

using the states immediately to the left and right of s, 
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dT       (TR -TL) ,     , 
w ^- ^ (7.3) 

dhs An y     ' 

while the thermal conductivity at s is taken as a simple arithmetic average, 

KS « -(KL + KR). (7.4) 

In the following sections, the one- and two-dimensional form of the governing equations are 

derived, assuming the conductivity to be a function of temperature. The exact form of the 

thermal conductivity for an electron fluid will be given in Section 7.4. 

7.2     One-dimensional case 

The one-dimensional heat equation will be described here in detail. To facilitate analysis, 

the heat equation is recast into differential form, yielding 

dE       d   (    dT\ ,     s 

-m=d^ [Ksd^) (7'5) 

and upon application of the chain rule to the LHS, an expression for the time rate of change 

of the temperature is obtained, 

dEdT _ d (   dT\ 
dT at ~dx\Ksdx) {Lb) 

Assuming a one-dimensional discretization on a uniformly-spaced mesh, the spatial deriva- 

tives can be approximated by finite-differences, thereby reducing the PDE to a system of 

ODE's, 

dT, _ (ET)-
1 

dt Ax 
[Ti+x-Ti) (Ti-Ti-i) 

Ki+1/2        Äx + Ki~1/2        Äx 
(7.7) 

for i = 1,2, • • • , M where 

^ = diag(...,^,...) (7.8) 

For an ideal gas, the definition of the specific heat yields dEijdTi = PiCv^. Rearranging, 
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dTi      (ET)i     r , , i 
—jT =        A     2       [Ki-l/2-l-i-l ~ («i-1/2 + «J+1/2J-M + Ki+l/2Ji+lJ 

the system of equations can be written in matrix notation as 

(7.9) 

dT 

~dt 
$T 

where $ is a tridagonal matrix and T is the spatial vector of temperatures, 

(7.10) 

$ 
Erp 

A~^ -1/2 
-(«i-1/2 

+«i+l/2) 
H+l/2 T 

Ti-! 

Ti 

Ti+\ 

(7.11) 

The above discretization has resulted in a reduction of the original PDE into a system of 

ODE's. The choice for discretization in time, however, is still open to consideration. Since 

electron diffusion is such a rapid process, the above system is stiff in comparison with the 

bulk convection. This implies that an implicit time marching scheme can be advantageous. 

Evaluating the RHS of Eq. (7.10) at time t + At, 

AT 

At" 
foll + lrpn+l (7.12) 

a temporal discretization is obtained, where Tn = T(t), Tn+1 = T(t + At), and $n+1 = 

$>(Tn+1). As usual, A is the forward difference operator. Linearization of the RHS is 

obtained through a Taylor series expansion, yielding 

AT -,     d(QT)i 4 - 
—- = $T + -i '-AT 
At dTi 

(7.13) 

in which the superscripts have been dropped with the implication that all terms are evaluated 

at time n. Isolating the energy difference, 
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AT = (I- AU)'1 At$T (7.14) 

the final expression is obtained which is used to compute the change in energy. The Jacobian, 

J = d(3>T)i/dTj is a tridiagonal matrix, 

with elements 

J XJ% \JI L-? 
(7.15) 

Erp 

A^2 
ÖKi -1/2 

m-i 
(T,_i - Ti) - Ki_i/2 (7.16) 

EZ 

Ax2 

dKi_1/2 
-^ (Jj_i - li) - Ki_i/2 

ÖKj+1/2 , . 
7^7       lJi+l _ JiJ _ «i+1/2 (7.17) 

En 

Ax2 

dni+1/2 

dTi+1 
(Ti+i - Ti) - «i+i/2 

Note that the Jacobian can also be expressed in terms of $ and Q only, 

(7.18) 

5$ 

Defining $ = (d$>/dQ)Q, the Jacobian can compactly be expressed as 

(7.19) 

J = $ + * (7.20) 

with the explicit form of $ easily found by subtracting $ from J, 
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* 
Erp 

Ax2 01) 
•;-i -• efm. Ti) 

•l^i-l/2 

dTi (2i_i - Ti) 

±l^{Ti+1-Ti)) 

o. '«»+1/2 
dTi+1 

(2i+i - ^) 

oi, 

(7.21) 

This splitting of the Jacobian is key to developing a condition for stability as derived in the 

following section. 

7.3     Stability 

The practical reason for using an implicit method is for its added stability over explicit 

methods, thereby allowing the solution to be advanced by larger time steps per iteration. 

Since the thermal diffusion equation is nonlinear, however, stability is not unconditional. 

Linearization has precluded the solution from being advanced to regions beyond which such 

an approximation is valid. As such, a criterion for an optimal time step must be determined 

as to maximize solver efficiency while avoiding oscillations or even catastrophic instability. 

The solution of Eq. (7.14) at time t + At is given by 

fn+1 = {I- AtJ)-1^ - AtJ + At$]f" (7.22) 

or equivalently 

fn+1 = (I- At($ + *))_1[7 - AtV]Tv (7.23) 

after application of Eq. (7.19). Introducing Q = (I - Ai($ + *))_1[7 - AW] such that 

rp1l-\-l       i^vT-ill (7.24) 

it is evident that stability of the above system can only be guaranteed if the eigenvalues of 

e. 
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Ae 1 - AtXf 
1 - At(Xf + Xf) 

(7.25) 

satisfy the condition 

|Af|<l,Vi (7.26) 

The strict evaluation of this criterion requires the eigenvalues of $ and \P be determined from 

recursion formulas, adding severe complexity to the analysis. This is avoidable, however, 

as a reasonable estimate can readily be found by assuming that the function Kj,Vi in $ as 

well as the function dKi+1/2/dTi(Ti+1/2 —Ti+i/2),yi in \I/ can be replaced by representative1 

constant parameters </> and tp, such that 

$ "" ^A^B{M : X' _2'1}'     * "" ^B{M • h "2'1}' 

The eigenvalues of Eq. (7.25) can then be approximated as 

(7.27) 

A -40 
E- 

Ax2 2(M + 1) 
A? -Aijj 

E- 

Ax2 2(M + 1) 
(7.28) 

where B(M : 1,-2,1) is banded matrix notation for a tridiagonal matrix with the main 

diagonal composed of 2's while the entries of both the subdiagonal and superdiagonal are 

1. Note that <p is necessarily positive while tp is not. Returning to the stability condition, 

-1 > 
1 - AtXf 

it is now evident that for Xf > 0 

-1 > 

l-Ai(Af+Af) 

1-Ail A* I 

< 1 

l-At|Af|+At|Af 

the system is unconditionally stable, while for A* < 0, 

< 1 

This approach can be found in [106] for example 
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1 + AfjAfl 
_1 " l + At|A?| + At|Af| " l (7'31) 

it is found that 

A,iWl^Wl (7'32) 

which holds true iff the denominator is positive, i.e. 2|A*| > \\f \. In other words, as 

\\f\ —» 2|A*|, At —> 0, and as a result, |A*| can safely be neglected. Neglecting this 

eigenvalue greatly simplifies the condition, but the drawback is a more restrictive time step. 

The condition can be restated as 

At < ^Vr (7-33) 

for which Eq. (7.28) can be applied, yielding 

At < 
-4V>Ssin2(äefe) 

(7.34) 

7.4     Thermal conductivity 

Constitutive equations for the thermal conductivity are necessary to obtain closure for the 

diffusion equation. In the case of electron heat transfer, the thermal conductivity for a 

fully-ionized plasma takes the form 

j,5/2 

Ke « 1.44 x 1(T10^— [W/m • K] (7.35) 
In A 

with the Coulomb logarithm given by 

rp3/2 

A = 1.24 x 107^-. (7.36) 
nj 

7.5     Benchmarks 

In order to validate the thermal diffusion solver, a test problem was created which demon- 

strates the importance of electron heat conduction in a fully-ionized plasma. The problem 
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Figure 7.1: Thermal diffusion benchmarks—fully-ionized argon plasma (Ar+, e~) without 
{left) and with [right) electron heat conduction. The shock is created by reflection of a 
uniform flow from an adiabatic wall located at x = 10 mm 

setup consists of a uniform one-dimensional flow field described by 

/  _      \ / 

V 

4.13 Pa     1 

4700 m/s 

275 K 

(7.37) "ex 

\T~   ) 

composed of e~ and Ar+ species with equal number densities (fully ionized) impinging upon 

an adiabatic wall2. The shock structure resulting from the reflection of the plasma from 

the wall is given in Figure 7.5 for cases with and without electron heat conduction. The 

results show that without conduction, the shock travels at approximately Mach 19 while 

with conduction, this value decreases to approximately 16. This is a significant difference 

and demonstrates the amount of thermal energy that is diffused by the electrons across 

the shock. The pre-shock electron temperature profile reflects the nonlinear dependence 

(K ~ Te    ) and is consistent with the analytical solutions presented in [128]. 

A point of interest is the plasma overheating that results when the shock reflects from the 

wall for the case without heat conduction. This is purely a numerical anomaly and results 

from a known deficiency of approximate Riemann solvers (cf. [82] and [75]). Although its 

treatment is not addressed nor implemented here, the electron heat conduction is significant 

Coulombic thermalization is also considered and is detailed in Section 9.5. 
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enough to diffuse away this anomaly and minimize any adverse effects. 

Also noteworthy is the discontinuous profile of the electron temperature across the shock. 

While adiabatic compression of the electrons across the shock may lead to such a jump, 

thermal diffusion should be significant enough to smooth out the profile. It has yet to be 

determined whether this jump is indeed physical in nature or is a numerical artifact. 
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CHAPTER 8 

NEAR-VACUUM FLOWS 

Under certain flow conditions, a situation may occur in which the internal energy becomes 

a small fraction of the total energy. For example, in cases of rapid expansions, the kinetic 

energy may dominate the total energy of the system as the internal energy quickly drops. 

As the kinetic energy is subtracted from the total energy, substantial errors in the internal 

energy and subsequent pressure may result1. This problem is further compounded in cases 

in which the density approaches zero, as small fluctuations in this variable can lead to large 

errors in the fluid temperature. 

While the choice of solver can have some impact in such cases [81], the root of the problem 

lies in the conditioning of the governing equations. This problem has been addressed in the 

literature with several approaches being proposed. In [24], the internal energy is convected 

independently of the total energy which is a technique that can be found in mature CFD 

codes. The drawback is that the formulation is no longer conservative and can result in 

significant errors. 

Another approach has been to modify the reconstruction scheme to include a bound on 

the internal and kinetic energies [51]. While this technique is able to preserve positivity of 

the governing equations, it does not address the conditioning problem of the system. 

The approach taken here is to augment the transport equations with entropy conservation 

in a similar fashion as done in [62]. This in effect is a way to convect the internal energy 

independently of the total energy while preserving the conservation property of the governing 

equations. Such an approach, however, is limited to flows that are isentropic, namely non- 

shocked polytropic gases. However, this approach can be extended to include real gas effects 

This problem can be even more dramatic if the MHD equations are considered with a strong magnetic 
field, in which case the magnetic pressure can be a dominant term as well. 
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through the inclusion of relaxation parameters, assuming near-equilibrium conditions. The 

formulation of the governing equations are presented first followed by benchmarks on a 

standard rarefaction test case. 

8.1     Formulation 

The purpose of this section is to augment the the continuity, momentum, and energy equa- 

tions with an entropy equation in conservation form. The derivation is entirely analogous to 

that of the electron energy equation for the 2T model presented in Chapter 2. For simplicity, 

a single component fluid will be considered. For a polytropic gas, the entropy equation can 

be expressed in conservative form as 

dps 

~dt 
V • {tips) = 0 (8.1) 

with s = p/p1 •   Incorporating this into the governing equations, the entropy-augmented 

Euler equations can be expressing in vector form as 

dQ 

at V-F„ (8.2) 

where 

Q 

U^ 

Pn 

pu 

pv 

pw 

E 

V s J 

v 

H 
Pn 

U 

V 

w 

p 

V p ) 

F„ 

VnPl 

Vnpn 

vnpu + nxp 

vnpv + nyp 

vnpw + nzp 

vn{E+p) 

vnS 

(8.3) 

and S = ps. The flux Jacobian of the system is analogous to Eq. (A.4) and is given by 
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dF 

OQ 

( 
"(1 -v\) 

-uyn 

-uv 

-uw 

Ppi — Ü • u 

<APl,E 

\     -uS/p 

-uyi lh 

P 

(1 - Vn) Un 0 0 0 0 

—uv V u 0 0 0 

—uw w 0 u 0 0 

— u • u Pmx + 2M p p 1 mz PE Ps 

Apn,E *A-mx,E uPmy uPmz «(1 + PE) uPs 

—uS/p S/p 0 0 0 u 

where 

APitE = uPPi - u(E + p)/p, 

Amx,E = uPm:i; + (E +p)/p. 

The similarities with the 2T extend to the diagonalization of the flux Jacobian, resulting in 

an analogous eigensystem as well. The right and left eigenvectors for the entropy-augmented 

Euler equations can be deduced from Eqs. (A.11) and (A.15), respectively. In addition, the 

Roe-averaged states Q can be found from a linearization of the definition of the flux Jacobian, 

AF = A{Q)AQ, (8.4) 

and are given by 
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p = VPLPR 

„ \/ft% + \ /^«R 

V^ + \ /p^ 

h0 = 
Vft^OL  + V/'R'

1
OR 

VPT + VPR 

Q — 
^^1^ + ^ /ÄX 

/pT + v^ 

(8.5) 

(8.6) 

(8.7) 

(8.8) 

Note that with the inclusion of both the energy and entropy equations, there are two distinct 

possibilities for computing the Roe-average pressure and sound speed for isentropic flows. 

The first option is to compute the sound speed and pressure from the stagnation enthalpy 

according to 

1/2 

~a = (7 - 1) \h0 - -ü
2 j (8.9) 

P = &. (8.io) 
7 

Alternatively, the values may be derived from the entropy, 

p = Sf-1 (8.11) 

/     ~\ 1/2 

-(f) <-) 
To ensure consistency, Eq. (8.11) must be used if the left and right pressure states were 

computed from the entropy variable as well. If the left and right pressure states were 

computed from the internal energy, on the other hand, the sound speed should be derived 

from the Roe average stagnation enthalpy. 

8.2     Benchmarks 

One of the most common benchmarks to test a solver's ability to properly capture high 

velocity/low density flows is the 1-2-3 problem, so-called due to the initial ratio of density 
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(*) ( 1 ^ M (     1     \ 

uh 
= -2 5 MR = 2 

\p,) I   °'4   J {p*} I0'4/ 

to momentum to energy, respectively [37].  This test case simulates two retracting pistons 

and the low pressure/density region that results. The left and right states are defined by, 

U3) 

for a polytropic gas with an adiabatic exponent of 5/3. The deficiency of numerical solvers in 

duplicating the exact solution is a conditioning problem inherent in the governing equations. 

At very low densities, relatively small changes in the pressure and density can lead to large 

errors in temperature as can be seen in Figure 8.2. However, if the pressure is obtained 

directly from the entropy function, p/p7_1, this problem is essentially eliminated as can be 

seen in Figure 8.2. 
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Figure 8.1:  Solution to Einfeldt's 1-2-3 problem as obtained with conservation of energy. 
Symbols (o) denote numerical solution while solid line (—) is the exact solution. 
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Figure 8.2:  Solution to Einfeldt's 1-2-3 problem as obtained with conservation of entropy. 
Symbols (o) denote numerical solution while solid line (—) is the exact solution. 
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CHAPTER 9 

COLLISIONAL-RADIATIVE MODEL 

In this chapter, the collisional-radiative model developed for monatomic argon is detailed. 

The CR model functions as a generalized equation of state for the electronic energy modes. 

It is used to compute the populations of the excited levels through detailed kinetic relations 

for excitation and ionization, and reverse processes, allowing for non-Boltzmann distribution 

of bound electronic states. Rates are computed from collision cross sections of the associ- 

ated processes under the assumption of a Maxwellian electron energy distribution function 

(EEDF). 

The CR model presented here draws upon the previous work of Vlcek [117] and Bultel et 

al. [19] both of which are specific to argon. The model includes the first 31 excited levels of 

neutral argon, for which a partial Grotrian is provided in Figure 9.1, as well as the ground 

states of the singly-charged ion. Population of the states beyond the lower lying levels is 

negligible for the plasma conditions considered, as verified by equilibrium considerations. 

Level grouping is not considered, as the approach here is to look in detail at the influence 

of the lower lying states. 

As the CR model will be validated on the UTIAS shock tube experiments in the following 

chapter, assumptions made herein are based on the plasma conditions of the experiments 

where ever necessary. This includes number densities up to 1024 [m_3] and temperatures 

just above 1 eV. 

9.1     Rate equations 

The processes to be included can be represented by the following rate equations, 
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Figure 9.1: Partial Grotrian diagram for neutral argon taken from [99]. 

Ar{i) + e~ ;=^ -Ar-(j) + e" 

Ar(i) + Ar(l) ^ Ar(j) + Ar {I) 
Lji 

Ar(i) + e~ ^ Ar+ + e~ + e~ 
Oi 

Ar(i) + Ar(l) ^ Ar+ + Ar(l) + e~ 

Ar(i) + hVij I       3'   3^ Ar(j) 

Ar(i) + hv ^ 

Aij 

(l-Ai)Ri 

Ri 
Ar+ + e 

(9.1) 

(9.2) 

(9.3) 

(9.4) 

(9.5) 

(9.6) 

where the rate coefficients defined in [117] are summarized in Table 9.1. The convention has 

been adopted that takes j > i so that C^ and Kij represent the rates for excitation from 

level i to j while Fji and Lji are the rates for de-excitation from level j to i. The levels 

considered in the present model include only those up to the 3p53d and 3p55s manifolds 

(cf. Table 9.2). This implies that ionization and recombination should proceed from and to 

only these low-lying levels; although levels beyond this manifold are more that 1 eV away 
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Rate 
Coefficient     Process 

Cij collisional excitation by electrons 
Kij collisional excitation by ground state atoms 
Fji collisional de-excitation by electrons 
Lji collisional de-excitation by ground state atoms 
Si, Vi collisional ionization 
Oi,Wi three-body recombination 
Ri radiative recombination 
Aij transition probability/spontaneous emission (Einstein coefficient) 
K^ bound-bound optical escape factor 
Aj bound-free optical escape factor 
kei electron-ion collisions 
ken electron-neutral collisions 
fcbrems bremsstrahlung emission 

Table 9.1: Rate coefficients for collisional-radiative model. 

from the ionization limit, the combination of small energy gap and large cross-section makes 

the ionization from these levels extremely rapid, certainly with time scales much below the 

time resolution needed in the current research. Thus the lower-lying states provide the 

bottleneck to the ionization regime and most of the energy in bound states. 

Note that neutral argon has two ionization potentials owing to the fact that the levels of 

argon are split according to two possible configurations for the core angular momentum jc. 

Neutral argon has two ionization potentials corresponding to two possible configurations 

for the core angular momentum jc. As ionization and recombination can proceed only 

between levels having the same value of jc, the populations of the two lowest lying levels of 

Ar+ must be accounted for individually. In the current model, these two levels are treated 

as separate species and convected as such. 

Considered here are plasmas for which a Maxwellian electron energy distribution function 

(EEDF) is valid, 

which has been normalized according to 

/(£) de = 1. (9.8) 
o 
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i s(i) [eV] 9i jc ne[K]j i e(i) [eV] 9i jc n£[K]j 

1 0 1 1.5 [Mg]3p6 18 13.903 5 1.5 3d[3/2]2 

2 11.548 5 1.5 4s[3/2]2 19 13.979 9 1.5 3d[7/2]4 

3 11.624 3 1.5 4s[3/2]i 20 14.013 7 1.5 3d[7/2]3 

4 11.723 1 0.5 4s'[l/2]„ 21 14.063 5 1.5 3d[5/2]2 

5 11.828 3 0.5 4s'[l/2]i 22 14.068 5 1.5 3d[3/2]i 
6 12.907 3 1.5 4p[l/2]i 23 14.090 3 1.5 5s[3/2]2 

7 13.076 7 1.5 4p[5/2]3 24 14.099 7 1.5 5s[5/2]3 

8 13.095 5 1.5 4p[5/2]2 25 14.153 3 1.5 3d[3/2]i 
9 13.153 3 1.5 4p[3/2]i 26 14.214 5 0.5 5.9'[l/2]o 

10 13.172 5 1.5 4p[3/2]2 27 14.234 5 0.5 3d'[5/2]2 

11 13.273 1 1.5 4p[l/2]0 28 14.236 7 0.5 5s'[l/2]! 
12 13.283 3 0.5 4p'[3/2]j 29 14.241 1 0.5 3d'[3/2] 2 

13 13.302 5 0.5 4p'[3/2]2 30 14.255 3 0.5 3d'[5/2]3 

14 13.328 3 0.5 4p'[l/2]! 31 14.304 3 0.5 3d' [3/2] i 
15 13.480 1 0.5 4p'[l/2]0 oo 15.760 4 1.5 [Mg]3p5 

16 13.845 1 1.5 3d[l/2]0 oo' 15.937 2 0.5 [Mg]3p5 

17 13.864 3 1.5 3d[l/2]j 

Table 9.2: Argon levels considered in current CR model. 

The rate coefficients are computed using the EEDF according to 

k a{e)ee-E/KT de 

where e0 is the threshold energy and v is the mean thermal velocity, 

(9.9) 

8kBT 
1/2 

(9.10) 

with fi being the reduced mass. The reverse rates are then computed from the principle of 

detailed balance. For excitation processes this takes the form 

' 9j 
(9.11) 

where £j is the energy difference of the upper and lower levels. The temperature 

in Eq. (9.11) is taken to be that of the the impact species. For processes involving a third 

body, the reverse rates are computed via 

KA   — Ki 
Z+Ze 

(9.12) 
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where Ze is the electron partition function, 

Ze = 2( J^j (9-13) 

while the ratio of partition functions for Ar and Ar+ can be approximated as1 

z+     g+ 

with i, being the ionization potential of the ith excited state, allowing Eq. (9.12) to be 

written as 

kr =ki2il  ( Hl ") CV*BT (9 15) 

Note that the exponential temperature dependence in Eq. (9.15) is a function of the third 

body—T is taken to be either the electron or heavy particle temperature for cases in which 

the third body is an electron or atom, respectively. 

In addition to species production rates, the second moment with respect to energy is 

also necessary as it determines the energy production rate for a given process, 

/oo 

a(e)e"e-^T de (9.16) 

In practice, all rate coefficients and their derivatives are computed a priori and tabulated 

as a function of temperature which is used in the code. This is possible due to the assumption 

of a known distribution function. 

The remainder of this section is devoted to calculation of the cross sections and associated 

rates used in the CR model. For further details, the reader is directed to [19] and [117]. 

9.1.1     Atom impact processes 

Cross sections for atom-atom collisions are typically several orders of magnitude less than 

their electron-atom counterpart since for a given translational temperature, ve 3> va. How- 

ever, with the absence of electrons immediately behind the compression shock, atom-atom 

collisions are the only means for initial electron production and result in the necessary 

Assuming rriAr ~ m 
Ar+- 
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i j ß*j [m2/eV] ftj 

1 3 1.10 x 10"23 6.78 x 10"02 

1 5 3.95 x 10"23 2.56 x 10"01 

1 17 9.58 x 10"26 1.00 x 10"03 

1 23 3.10 x 10"24 3.40 x 10"02 

1 25 8.55 x 10"24 9.51 x 10"02 

1 30 1.59 x 10"24 1.80 x 10"02 

1 31 6.92 x 10"24 7.94 x 10"02 

Table 9.3: Atom impact excitation parameters for allowed transitions from ground state Ar. 

i 3 ßtj [m2/eV] 

2 3 1.79 x 10"24 

2 4 4.80 x 10"26 

2 5 4.80 x 10"26 

3 4 4.80 x 10"26 

3 5 4.80 x 10"26 

4 5 1.79 x 10"24 

Table 9.4: Atom impact excitation parameters for intra-4s transitions. 

priming electrons that eventually trigger inelastic electron collisions. 

Excitation from ground state in particular plays a significant role in determining the 

overall induction length, i.e. the distance between shock-front and electron avalanche. In 

addition, the excitation rates have a profound influence on the dynamics of the simulation. 

It will be shown that pressure waves initiated at the electron avalanche are exacerbated for 

undervalued cross sections while excessive values can lead to over damping of the system. 

The sharp sensitivity of the convection-kinetics coupling highlights the need for accurate 

determination of the heavy particle cross sections. 

The cross sections for excitation from ground state have been determined from Drawin's 

model, 

°?<W = ^l (#Y ^e^^^r- ^^ -2 (9.17) 
1+     2mT    (e/Eii-l)) 

where IJJ is the ionization potential of the hydrogen atom and £ is the number of optical 

electrons. For the energy ranges under consideration, Eq. (9.17) is well-approximated by a 
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linear function, 

aa
lj(e)=ß*lj(e-eij), (9.18) 

where 

ß\   =^al^-efij— (9.19) 

The inner 3p54s manifold transitions, however, take the form [19] 

°tj(E) = fij^^ST (9-20) 
ij 

All necessary parameters are given in Table 9.3. 

Less sensitive are the ionization cross sections—we remark that decreasing these values 

by an order of magnitude did not have any significant effect on the induction length or flow 

dynamics. The cross section for ionization from ground state argon is taken from [50], 

<j?(e) = 1.8 x 10"25(£ - 15.760)13 [m2], (9.21) 

while the formula of Drawin has been applied for all other levels, 

"?(*) = ^ ('£)   H^e^^- ^^ ~2. (9.22) 
hj    mH     mAr+me(1  ,       2me     fr./T      -nV 

mAr+"*i ie/h-l))' 

9.1.2     Electron impact processes 

Once a sufficient number of priming electrons have been generated by heavy particle impact 

and their temperature increased by thermalization, electron impact processes begin to be- 

come important and eventually dominate the kinetics. The rates associated with processes 

are critical in determining the magnitude of the electron avalanche and associated ionization 

fraction. The cross sections for ionization and excitation processes can be computed using 

Drawin's formulas, 

The cross sections for electron-impact excitation are due to Zatsarinny and Bartschat 

[126],[125].  These include excitation from the ground and 4s levels to all levels below the 
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s P d / 

a 1.06 2 3/2 3/2 
b 0.23 1 3 1 
c 1 1 2/3 2/3 
d 1 1 1 1 

Table 9.5: Electron-impact ionization parameters as taken from [35]. 

Valence electron 
shell, n£ rn£ [m] 9nl X Ini [eV] 

4s 2.49 x 10"10 7.40 
5s 6.35 x 10"10 6.35 
4p 3.40 x 10"10 31.00 
3d 4.36 x 10"10 13.60 

Table 9.6:  Radii of Ar valence electron and reduced weighting factors for £ = 1 as taken 
from [35] and [34]. 

5p manifold. For all other transitions, Drawin's formulas 

atjfij(uij ~ l)/uij (Iif/Eij)2 m(1.25/3jjUjj)    allowed 

atAe) = Anal < aij(uij -!)/uf 

"««• -!)/<• 

parity forbidden 

spin forbidden 

(9.23) 

have been used systematically with afjfij = 1, af, = 1, and af, = 1. 

Cross sections for electron-impact ionization from the excited levels have been determined 

based on the work of Deutsch et al. [34] via 

0-iO) = gn£Trrl££,n£f(e) (9.24) 

where gn£ are the reduced weighting factors, rn£ are the radii of the valence electron, and 

fi(e) = d- 
h (e/h - 1 

fc + o[l-g)M2.7+(e/Ji-l)1/2) 

The necessary parameters for Eqs. (9.24) and (9.25) are given in Tables 9.5 and 9.6. 

(9.25) 
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9.1.3     Pressure ionization 

Particular attention must be paid when considering ionization and recombination in plasmas 

defined by relatively high densities. This is due to nonideal effects for which interactions 

between particles can lead to an effective lowering of the ionization potential. As a conse- 

quence, the rates must be considered as functions of pressure as well. Griem [44] used Debye 

theory to predict a decrease in the ionization potential that is inversely proportional to the 

Debye length, 

A£co,m = (• + 1)e\ (9.26) 
47re0A£) 

where \]j is the Debye length2, 

^(If)'" (9-27) 

For the shock tube conditions under consideration, the lowering of the ionization potential 

was found to be small, yielding a drop of 0.08 eV for an electron temperature of 1 eV 

and number density of 1023 m-3. As a result, the effects of pressure ionization were not 

accounted for. 

9.2     Photo-recombination 

In the absence of a third body, the energy released in recombination is liberated as radiation. 

Photorecombination is a significant loss mechanism and plays an important role in radiative 

cooling. The cross section for photorecombination can be found from the cross section for 

photoionization under equilibrium conditions [128], 

°ci(y) = —-¥^ä^,iM- (9-28) 

Utilizing the relation hv = meu
2/2 + e, = £ + £j, the cross section associated with the ground 

state is given by 

- neglecting the effect of ions 
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„   (r 4- F Y2     3-5 x 10"21 0<£<2£?-£l 

^) = ^{j^rl ,    .H    x3 0.29) 
3+   2£mec

2    l28xl0-2O,      -i      |       £>2£H 

e + £i 
ti 

while all others are computed using 

M , .ft(E + E0
a     2X1° 0<s<0.59£f-£l 

»+2—   |T..I x lo-» (I)    fa)    e>o.59£;-£( 

(9.30) 

The parameter ji(npqn^) takes the values 0.0763, 0.0458, 0.0305, and 0.0915 for i = 2, 3, 4, 

and 5, respectively [117]. 

Estimation of the mean-free path as based on the representative shock tube plasma con- 

ditions indicates that radiation from bound-free transitions to the ground state are absorbed 

locally while the mean-free paths for transitions to the 4s manifold are greater by several 

orders of magnitude. Thus, radiation from bound-free transitions is assumed to escape 

completely. 

9.3     Bremsstrahlung emission 

Free-free transitions have been incorporated in the model via Kramer's formula [128] for 

Bremsstrahlung emission, 

8Ee 16TT
2
     veZ

2
ne6g 

dt 3^3 meh(4ire0c)3   +   ' 
(9.31) 

= -1.42 x 10"40ZlsTl/2n+ne    [J • m"3 • s"1] (9.32) 

where g is the gaunt factor taken to be unity and the effective charge Z2
S is taken to be 

1.67 [42]. Bremsstrahlung emission resulting from neutral atoms is 1-2 orders of magnitude 

less than for ions and has therefore been neglected. The plasma is assumed to be optically 

thin to all Bremsstrahlung emission. 
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lower upper mean-free 
level level path [m] 

3p6 4s[l/2]a 3.59 x 10"2 

3p6 4S'[l/2]! 9.47 x 10-3 

3p6 3d[l/2]! 2.41 
3p6 5s[3/2]! 7.11 x 10"2 

3p6 3d[3/2]! 2.54 x 10"2 

3p6 5S'[l/2]i 1.34 x 10"1 

3p6 3d'[3/2] i 3.05 x 10"2 

Table 9.7: Estimated mean-free paths for bound-bound transitions to ground state for T • 
1 eV and n3pe = 1024 m-3. 

9.4     Bound-bound transitions 

In addition to photorecombination and Bremsstrahlung, bound-bound transitions are a sig- 

nificant source of radiative cooling of the plasma. The photoionization cross section for a 

given bound-bound transition may be estimated by [128], 

ei, = —  I GVM dv = 2.65 x 10"6^- [m2] (9.33) 

where the absorption oscillator strength is given by 

9i 37 

Contributions to the parameter 7 have been assumed to result from a combination of natural 

and pressure line broadening, 

7 = 7nat + 7col (9.35) 

given by 

7nat = ^-^ = 2.47 x 10-2V [s-1] (9.36) 

and 

2 
7coi =   = 2avn (9.37) 

Tool 
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E [eV] a X 1020 [m2] E [eV] a X 1020 [m2] E [eV] a X 1020 [m2] 
O.Ol 4.4679 0.25 0.3242 0.91 1.2176 
0.03 2.9180 0.29 0.2934 1.00 1.4002 
0.05 2.1193 0.31 0.2898 1.50 2.4307 
0.07 1.6052 0.32 0.2904 2.00 3.4680 
0.09 1.2481 0.41 0.3504 3.00 5.5581 
0.13 0.7972 0.51 0.4756 4.00 7.7317 
0.17 0.5428 0.61 0.6403 5.00 10.0665 
0.19 0.4621 0.71 0.8240 7.50 16.7176 
0.21 0.4002 0.81 1.0184 10.00 22.4036 
0.23 0.3548 

5 
Te[K] 

10 

xlO 

Figure 9.2:  Electron-neutral collision rate as computed from the theoretical cross sections 
(table) computed in [71]. 

respectively. The collision periodicity TCOI and the collision cross section a have been tal- 

lied for neutral argon-argon collisions. The radiation cross sections Eq. (9.33) have been 

estimated using the oscillator strengths and transition probabilities from [95] along with 

representative plasma conditions of the shock tube experiments. The resulting mean-free 

paths for bound-bound transitions to ground state given in Table 9.7 are below the length 

scales of the shock tube dimensions for most of the levels. It has therefore been assumed 

that all bound-bound radiation to the ground level from the excited states is absorbed. For 

all other transitions, the mean-free path is several orders of magnitude greater than the 

dimensions of the shock tube and the associated radiation is assumed to escape. 

9.5     Elastic collisions 

Elastic collisions are incorporated into the CR implicit solver as well. This strong coupling 

permits more accurate and stable calculations. The energy transfer between electrons and 

neutrals is computed as 

C>Ee 

dt 
OEH 

dt 
-kB(Th - Te) 

2me 

mAr 

(9.38) 
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For electron-neutral collisions, the theoretical cross section of McEachran and Stauffer [71] 

have been utilized. These are reproduced in Figure 9.2 along with the associated rates. The 

Coulomb collision rates, kei, have been computed using the energy-averaged properties [78], 

dEe dEh 3     . . 2me 
nenn-kB(Th - Te) ken (9.39) 

at at 2 rriAr 

kei = veQei (9.40) 

In A 
J>2 Qei = 5.85 x 10"10^ [m2] (9.41) 

/T3\1/2 

A = 1.24 x 107 I -s- j (9.42) 

where Qei is the momentum-averaged cross section, and A is the Coulomb logarithm. The 

energy transfer equation for electron-ion collsions is similar to Eq. 9.39 and is given by 

dEe dEh 3     , , 2me 
-77- = ^— = neni-kB(Th - Te) kei (9.43) 
at at I rriAr+ 

9.6     Numerical formulation 

The coupled system of linear rate equations for the CR model is expressed in vector form 

dQcR    -tl (9.44) 
dt 

where 
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n3pe 

n4s[3/2]2 

nis[3/2]1 

nnt[K]j 

•4r+(jc=3/2) 

•4r+(jc = l/2) 

Eh 

E, 

QCR = n„e\K\ , ,      fl= ^nd[K}j (9'45) 

^Ar+(jc=3/2) 

^Ar+(jc=l/2) 

ÜEh 

V A'e j V ^ ) 

Note that the conservative variables used in the CR formulation are not the same as those 

previously detailed in Chapter 2. However, conversion between the two vectors is accom- 

plished via the simple transformation, 

a->3j,6 

^4s[3/2]2 

W4s[3/2h 

where 

M 

VflAr 

V 

Q = MQCR 

mAr 

mAr+ 

mAr+ 

7e~l 
/ 

(9.46) 

(9.47) 

The components of £1 are obtained after combining the rate equations for all processes, the 

exact form of which are as follows. 

94 

E-114 



Ar levels 

dnk 

dt 
u,'„, = —- = '^2,ni{neCik + nxKik + (1 - Aki)Aki) - ^^nk(neFkj + nxLkj + Akj) 

i<k j<k 

- ^2 nk(neCkj + nxKkj + (1 - Ajk)Ajk) + ^ ni(neFik + nxLik + Aik) 
j>k i>k 

+ n+ne(niWk + neOk + Rk) - nk(neSk + nxVk + (1 - Ak)Rk) 

(9.48) 

Ar+ 

_ dn+ 

Heavy-particle energy 

Y^ ni{neSi + niVi + (1 - Ai)Ri) - n+ne ^(«i W* + n^°i + Ri)     (9-49) 

uEh = -7j— = nt Y^SijinjLji - riiKij) from (9.2) 
dt 

(9.50) 
+ ni ^ Ii(nen+Wi - riiVt) from (9.4) 

i 

k 
- 3pennkB(Th - Te)—^- from (9.39) 

mAr 

k • 
- 3pen+kB(Th - Te)—— from (9.43) 

mAr+ 

Electron energy 

i     j>i 

+ ne 22 Ii(nen+Oi - riiSi) from (9.3) 
i 

+ Y({ni(l-Ai)-nen+)R'i) from (9.6) 
i 

_ n^n 1Ü?[!    v-Z'eSe69 from ,g m 
e 3^3 me/i(47re0c)3 V '    ; 

k 
+ 3pennkB(Th - Te)—^- from (9.39) 

mAr 

k • 
+ 3pen+kB(Th - Te)—— from (9.43) 

mAr+ 

A necessary condition in closure of the above system is the assumption of quasi-neutrality, 
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which in this instance takes the form 

ne = nAr+(jc=3/2) + nAr+(ja=1/2). (9.52) 

It is important to note that since ionization and recombination proceed to and from either 

Ar+(jc = 3/2) or Ar+(jc = 1/2), the rates associated with such processes are functions of 

jc as well, such that 

Sif Ou Wif Vu Ri = f(jc). (9.53) 

Due to inevitable stiffness in the above system, the CR kinetics are solved implicitly, the 

algorithm for which is detailed in Appendix D. 
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CHAPTER 10 

UTIAS SHOCK TUBE EXPERIMENTS 

While conducting shock tube experiments at the Institute for Aerospace Studies, University 

of Toronto (UTIAS), Brimelow [16] discovered instabilities in the translational shock front 

of a strong ionizing shock in argon. The discovery set off a series of experiments that 

extended the research to various Mach numbers and other noble gases, including krypton 

and xenon. The UTIAS experiments were unique in that it was the first time instabilities 

were observed in an ionizing shock. The instabilities, which were observed as aberrations 

in the translational shock front and electron avalanche, were labeled as sinusoidal and an 

explanation for their existence was not determined. 

These experiments provided invaluable data for which to benchmark theoretical and 

numerical models, including databases. Measurements were taken in the form of interfer- 

ograms from which the total mass and electron number densities were derived. From this 

data, key parameters for describing the shock structure can be ascertained, including the 

peak ionization fraction, a, and the relaxation length, £, as measured from the shock front 

to the location of peak ionization. 

Glass and Liu [42] provided a theoretical model that was used in the analysis of the 

resulting shock structure based on the conditions of several of the UTIAS experiments. In 

particular, they determined the relaxation length to be a function of the excitation cross 

sections by atom-atom, aa, and electron-atom, ae, impact; the elastic cross sections for 

electron-neutral, aen, and Coulomb, ael collisions; and the combined radiation losses, graci: 

e = e(aa,ae,aen,aei,qr&d) (10.1) 

Of these, the atom-atom excitation cross sections were found to have the largest influence 
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on the relaxation length, which currently maintain an association with the largest amount 

of uncertainty. 

The work of Cambier [21] extended the model to include one-dimensional transient ef- 

fects and found that pressure pulses initiated by the electron avalanche would propagate 

downstream, increasing the pressure of the compression shock. The consequential increase 

in shock intensity was found to shorten the relaxation length and raise the peak ionization 

fraction. This phenomenon necessitated the addition of a new parameter T to describe the 

periodicity of shock fluctuations. 

Here, the collisional-radiative model detailed in the previous chapter is combined with the 

transport equations in order to match the experimental results of the UTIAS shock tube 

experiments presented by Glass and Liu. We proceed by first simplifying the governing 

equations to a steady-state form to develop a baseline for the collisional-radiative cross 

sections. Transient simulations are then performed in one- and two-dimensions to determine 

the effect of the cross sections on the dynamical behavior of the ionizing shock. 

10.1     Steady-state simulations 

Although the data provided by the UTIAS experiments are snapshots of dynamic behavior, 

steady-state calculations can nonetheless provide valuable insight to the shock structure. 

Such numerical experiments were carried out in [42] and are important in the current analysis 

as well to determine the atom-atom impact excitation cross sections. 

With the conditions downstream of the shock known along with the shock Mach number, 

the Rankine-Hugoniot relations were applied to determine the post shock conditions. A 

shooting method was then used to determine the steady-state shock structure, with the 

post shock conditions serving as the initial values. 

The steady-state form can be found by canceling the time-dependent term from the 

differential form of the governing equations (cf. Eq. (2.9)), 

0 

-£-+A—=n, (10.2) 
/at ox 

reducing the system to a set of ODE's, 
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Case Reference Mas Po [torr] To[K] £ [cm] a 

1 1 15.9 5.14 293.6 2.00 0.14 
2 2 16.1 5.15 295.9 1.90 0.15 
3 3 16.5 5.12 296.6 1.80 0.16 
4 4 13.0 5.01 296.6 8.90 0.06 
7 7 14.7 4.08 297.8 4.40 0.106 

Table 10.1: Shock tube cases studied by Glass and Liu. 

^-=A~1Ü. (10.3) 
ax 

The inverse of the flux Jacobian in Eq. (10.3) can be computed efficiently if the analytical 

form of the eigensystem is known (see Appendix A), such that 

^ = RA-'m. (10.4) 
dx 

The matrix product on the RHS of Eq. (10.4) can be computed in approximately 27V2 

operations. The inverse of A is well-defined as long as the flow velocity does not approach 

zero. 

Glass and Liu applied their steady-state model in the analysis of four different cases 

in pure argon which are summarized in Table 10.11. In a similar fashion, Eq. (10.4) has 

been applied to the same four cases, the results of which are presented in terms of total 

mass density p, electron number density ne, and ionization fraction a. As there exists 

a fair amount of uncertainty associated with the atom-atom excitation cross sections aa, 

these were varied until an acceptable agreement between the theoretically-predicted and 

experimentally-observed relaxation lengths was achieved. Exact agreement for all cases 

could not be achieved with a fixed value for aa. However, good agreement was obtained for 

the intermediate cases, corresponding to Mach numbers 14.7, 15.9, and 16.1, the results of 

which are summarized in Table 10.2. 

As mentioned in Section 9.1.1, the atom-atom impact excitation cross sections have been 

approximated as linear functions of energy as based on the model of Drawin. Tuning these 

cross sections was therefore a matter of modifying their slopes. This was accomplished by 

Although not modeled by Glass and Liu, information was provided on the relaxation length and ioniza- 
tion fraction of a Mach 14.7 shock that we also consider here as case 7. 
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Case Experiment [cm] Theory [cm] 

1 2.00 2.09 
2 1.90 1.88 
3 1.80 1.61 
4 8.90 10.6 
7 4.40 4.48 

Table 10.2: Comparison between experimental and steady-state numerical relaxation lengths 
for ionizing shock in argon. 

i j {% [m2/eV] 

1 3 9.35 x 10"25 

1 5 3.36 x 10"24 

1 17 8.14 x 10"27 

1 23 2.64 x 10"25 

1 25 7.27 x 10- 
1 30 1.35 x 10- 
1 31 5.88 x 10 -25 

Table 10.3: Tuned atom impact excitation parameters for allowed transitions from ground 
state Ar. 

multiplying /?*• in Eq. 9.18 by a factor of 0.085. That is, the current results indicate that 

Drawin's model over-predicts these cross sections by more than a factor of 10. The modified 

parameters are summarized in Table 10.3. In comparison with values previously obtained 

in the literature (cf. Table 1.1), it is evident that the cross sections used here are at the 

lower end of the spectrum, matching most closely with the values obtained by McLaren and 

Hobson [72]. 

10.1.1     Effect of upper levels 

In an effort to quantify the influence of the upper levels on the overall shock structure, 

simulations were first performed taking into account the 4s manifold of Ar exclusively, 

followed by systematic inclusion of higher manifolds, including the Ap, 5s and 3d. Numerical 

results obtained with levels of only the 4s manifold given in Figure 10.1 show satisfactory 

prediction of the induction length, but poor reproduction of the radiative cooling region as 

indicated by the slow drop-off in electron number density, indicating an under-prediction in 

radiative losses. This is as expected as the the plasma has been assumed to be optically-thick 

for all transitions to ground state Ar (cf. Section 9.4), resulting in no radiative losses due to 
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Figure 10.1: Comparison of experimental (o) and numerical (-) results for Ma 15.9 shock in 
argon in terms of total mass density p and electron number density ne. Numerical results 
were obtained using only levels of the 4s manifold of Ar. 

bound-bound transitions since intra-4s transitions are forbidden. As a result, all radiative 

losses in this case are due to free-free and free-bound transitions only. 

When the levels of the 4p manifold are included in the CR model, the numerical predic- 

tion of the radiative cooling region drastically improves as indicated by the results in Figure 

10.2. The difference clearly represents the direct influence of the 32 allowed transitions 

within the 4p manifold as well as those between the 4s and 4p manifolds on the radiative 

cooling region. 

Figure 10.2 illustrates the the effects of additional levels, this time with inclusion of levels 

from the 5s and 3d manifolds. The results clearly indicate an asymptotic approach of the 

numerical solution to the experimental results as more levels are included and hence the full 

extent of radiative losses due to bound-bound transitions are realized. 

Similar behavior can also be observed through the influence of additional levels on the 

ionization fraction as evident in Figure 10.4. As more levels are added, the ionization 

fraction approaches the experimentally-observed value. Also apparent is the effect of the 

upper levels on the induction length. Addition of the upper levels increases radiation losses in 
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Figure 10.2: Comparison of experimental (o) and numerical (-) results for Ma 15.9 shock in 
argon in terms of total mass density p and electron number density ne. Numerical results 
were obtained using levels of the 4s and Ap manifolds of Ar. 

xlO 

Figure 10.3: Comparison of experimental (o) and numerical (-) results for Ma 15.9 shock in 
argon in terms of total mass density p and electron number density ne. Numerical results 
were obtained using levels of the 4s, Ap, 5s, and 3d manifolds of Ar. 
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Figure 10.4: Effect of upper levels on the ionizing shock structure as indicated by the 
ionization fraction. With the inclusion of more levels, the numerical ionization fraction (-) 
approaches the experimental results (-). 

the induction region, thereby delaying the onset of the electron avalanche. It should be noted 

that the ionization fractions as derived from the experimental data for this particular case, 

Ma = 15.9, as well as for the case of Ma = 16.1 in [42] do not coincide with the respective 

total mass and electron number densities provided. As a consequence, the experimental 

ionization fractions plotted for comparison have been computed directly from the plasma 

densities. Results for the remaining three cases (2,3,4) have been provided in Appendix E. 

10.1.2     Shock structure 

Details of the electron and heavy-particle temperature profiles along with the Boltzmann 

and Saha equivalence temperatures provided in Figure 10.4 help illustrate the influence of 

the various CR processes and to separate the shock structure into several distinct regions. 

The first region, easily identifiable by a sharp spike in electron temperature just behind the 

compression shock, indicates the initial production of priming electrons which are rapidly 

thermalized by the heavy particles. The excitation temperatures based on a Boltzmann 

distribution, 
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Figure 10.5: Details of the Mach 15.9 ionizing shock structure in terms of electron, heavy 
particle, and excitation temperatures. The bottom profiles labeled 4s, 4p, and 3d, 5s are 
of the Saha equivalence temperatures of the respective manifolds, while the upper profiles, 
characterized by a sharp rise accompanied by an overshoot, are of the Boltzmann equivalence 
temperatures. 
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surpass the electron temperature, indicating over-population of the excited states and con- 

firming that the priming electrons are generated via Ar-Ar inelastic collisions. 

The spike is quickly followed by a dip in electron temperature, signaling a shift from 

heavy-particle dominated kinetics to electron-impact processes. That is, as the electron 

population becomes more significant, the electrons themselves become responsible for the 

bulk of excitation and ionization processes. As a result, thermal energy of the free electrons 

is transferred to the bound electronic modes as well as liberating more electrons. The dip is 

the result of this energy transfer which cannot be compensated for by thermalization with 

heavy-particles. The excitation temperature declines as well, and stabilizes significantly 

below the electron temperature. This indicates that ionization is rapid from the excited 

levels under these conditions, causing an under-population of the excited levels, and hence 

the deviation from Te. 

After this, the electron temperature recovers from the dip and increases steadily as en- 

ergy is transferred from the heavy-particles to the free electrons at a slightly higher rate 

than which the electrons lose energy through inelastic collisions. In this region, electron 

production begins to ramp up exponentially, triggering rapid thermalization with the heavy- 

particles and the resulting electron avalanche. The avalanche results in complete thermaliza- 

tion between the heavy-particles and electrons, as the energy reserves of the heavy particles 

becomes exhausted. All levels finally reach Boltzmann and Saha equilibrium and the plasma 

is well-described by a single temperature. 

It is worth noting that the spread of excitation temperatures throughout the shock 

structure is quite small, indicating Boltzmann equilibrium among the excited levels with 

respect to the ground state. This indicates a rapid exchange between the excited levels, 

with the result that the plasma may be approximated by a three-temperature model under 

such conditions. 
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V„ = 4535 m/s 
p„ = 685 Pa, 
T«, = 293.6 K Mas 

/ 

/ 

/ 

Figure 10.6: Numerical setup for unsteady ID shock tube simulations. 

10.2     Unsteady ID simulations 

With the CR model validated against experimental data for the steady-state case, the un- 

steady solver was then applied to determine the effect of the kinetics on the dynamic behavior 

of the system. Initial work on such unsteady effects verified the exsistence of oscillations in 

the form of longitudinal pulsations in the direction of flow [21]. Building upon this work, 

similar numerical experiments are carried out here, albeit with the more detailed CR model. 

The conditions of the shock tube experiments were simulated numericaly by impinging 

argon gas upon a wall, thereby initiating a shock that would propagate against the oncoming 

flow as illustrated in Figure 10.6. The freestream conditions provided in the figure were those 

used to reproduce the Mach 15.9 shock of case 1. Note that such conditions correspond to 

a shock with an initial strength of Mach 19. As the shock reflects from the wall, its Mach 

number decreases as the thermal energy is quickly converted to electronic energy in the form 

of bound excited states as well as free electrons, until a quasi-steady limit is reached. 

The results in Figures 10.7 and 10.8 clearly show oscillations, characteristic of the ex- 

perimental results, that appear as undamped, periodic fluctuations in both the shock Mach 

number as well as the induction length, with a periodicity of approximately 32.5 //sec. The 

oscillations do not vary smoothly as evident in the discontinuous shifts of the induction 

length, signaling strong non-linear behavior. In fact, this behavior is well approximated by 
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Figure 10.7: Instantaneous Mach number as a function of distance from the wall located at 
40 cm for Mach 15.9 case. 

I 1 T = 32.5 fjsec 

1     ft2 

£= —  /     4 dt= 2.22 cm 
 i •ill i i_ 

3 4 
time [seel xlO 

Figure 10.8: Instantaneous induction length as a function of time for Mach 15.9 case. Dashed 
red line indicates the experimentally observed value of 2 cm. The fluctuation periodicity is 
32.5 /isec, with an induction length of 2.22 cm averaged over one period. 

the square-wave model for detonations [39] in which the kinetics are assumed to be frozen 

below a certain threshold, but infinitely fast above, reaching equilibrium instantaneously. 

This necessitates introduction of an average induction length defined over one period, 

1 

At 
>L^(XL} (10.6) 

with i,f being the instantaneous induction length. In regards to the discontinuous change in 

the induction length exhibited in this particular case, there is evidence that these anomalies 

have a physical origin. From the experimental results, it can be seen that in certain regions 

the ionization fraction rises before taking a sharp dip after which it spikes until the peak of 

the avalanche is realized. 
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10.2.1     Fluctuation mechanism 

A semiquantitative description of the fluctuations can be extracted from the space-time plots 

given in Figure 10.2.1 as well as several snapshots illustrated in Figure 10.2.1. The plots 

clearly show pressure waves emerging from the electron avalanche that travel both towards 

and away from the compression shock. This is taken as the initiation of the fluctuation 

cycle. The forward-moving wave overtakes the shock, thereby increasing its temperature 

and speed.2 The resulting high temperature region generated behind the shock is separated 

from the previous post-shock region by a contact wave that can be seen as traveling away 

from the shock as it accelerates. Identification of the contact waves is trivial as they are 

present in the mass density plot but absent in the pressure plot. 

The temperature jump across the contact wave is crucial. Due to the exponential de- 

pendence on temperature, a relatively small jump can accelerate the kinetics and cause the 

electron avalanche to form much sooner than its quasi-equilibrium position. This discon- 

tinuous shift in the electron avalanche evident in Figure 10.2.1 is entirely analogous to the 

mechanism for detonation wave fluctuations proposed by Alpert and Toong [2]. 

This theory of the fluctuation mechanism can be confirmed by a simple estimation of the 

periodicity of the oscillations from basic wave theory. In [21] it was shown that the period 

can be approximated by 

1 i   ' (10-7) 
,a2 - u2      u2/ 

assuming that the pressure wave travels towards the shock with the nonlinear wave speed 

0-2 — v-2, while the entropy wave reflected from the shock travels with velocity u2, where 

the subscript 2 denotes the post-shock state. With u2 = 1284m/s and a2 = 2852m/s taken 

as the post-shock fluid and sound speeds respectively, the estimated periodicity is 31.4/Ltsec 

which agrees well with the observed value of 32.5/isec (cf. Figure 10.8). 

10.2.2     Sensitivity to cross sections 

Knowing the effect of the cross sections on the dynamics of the oscillations is crucial to 

a stability analysis.   While an analytical approach to stability is not pursued here, semi- 

The interaction also produces a rarefaction wave due to the acceleration of the shock which is too weak 
to notice here. 
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Figure 10.9: x-t diagrams for ID Ma 14.7 case. Clockwise from top left: total density, 
total pressure, velocity, electronic temperature, heavy-particle temperature, and ionization 
fraction. Gradients are enhanced through shading effects. Colormap: min H      H max 
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Figure 10.10: Dynamic evolution of ID ionizing shock structure: a) quasi-equilibrium state 
b) pressure wave initiated at electron avalanche travels towards compression shock c) after 
overtaking shock, pressure wave is reflected as an entropy wave due to strengthening of 
shock d) sensitivity of excitation and ionization rates to temperature jump across entropy 
wave results in earlier onset of electron avalanche. The process then repeats. 
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Figure 10.11: Sensitivity of ID ionizing shock oscillation dynamics to cross sections. Left: 
Results using Drawin's atom-atom impact excitation cross sections. Right: Results obtained 
after decreasing electron-atom impact excitation cross sections by a factor of ten. 

empirical considerations can serve as a valuable precursor to such studies. 

As a first test, the Mach 14.7 case was run using the atom-atom impact excitation 

cross sections as computed from Drawin's formula, Eq. (9.17), without modification. As 

a reminder, the resulting rates are more than a factor of ten greater than those used to 

obtain the solutions with the experimentally-observed induction length. The results shown 

in Figure 10.2.2 indicate that increasing the atom-impact excitation cross sections by an 

order of magnitude, essentially halves the induction length. Furthermore, the influence 

on the oscillations is pronounced, resulting in significant damping to the point that the 

oscillations can no longer be sustained. The explanation for this is as follows. As the pressure 

wave emanating from the electron avalanche overtakes the compression shock, the heavy 

particle temperature increases. This in turn increases the atom-impact inelastic processes 

accordingly to their exponential dependence on T^. The atom-impact inelastic processes thus 

act as an energy sink, effectively absorbing energy from the pressure wave and damping the 

oscillations. 

In a separate test, the electron-atom impact excitation cross sections were reduced by 

a factor of ten. In this case the atom-atom impact excitation cross sections were also 

modified so that the induction length was close to 4.4 cm as seen in Figure 10.2.2. While 

the oscillations still persist in this case, a key observation is that the discontinuous change 

in the induction length (cf. Figure 10.7) has disappeared. Instead, the oscillations vary 

smoothly over the entire period of the fluctuation. The discontinuous shift is a nonlinear 

effect caused by the exponential temperature dependence of the rate equations and is well- 

approximated by the square-wave model for detonation phenomena as previously noted. 
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As the electron-impact cross sections are decreased, this nonlinear effect diminishes, and is 

overshadowed by other processes, such as thermalization. This slows the rate of onset of the 

electron avalanche and gives the fluid more time to "react" to the kinetics. 

10.3     Unsteady 2D simulations 

With a general understanding of the oscillation mechanism and resulting wave pattern ob- 

served in the unsteady ID simulations, focus was then set upon extending the simulations 

and theory to a two-dimensional shock tube. With a second dimension, the oscillations 

observed in the ID simulations are no longer confined to the longitudinal direction, leading 

to the possibility of transverse waves. While this opens the door to more complex wave 

interactions and structures, a systematic approach that extends the ideas of the previous 

section in a straight-forward manner is taken here. 

The 2D simulations were conducted on the domain 0 < x < 54 cm, 0 < y < 18 cm, with 

a depth of 10 cm3. A general schematic is provided in Figure 10.3. The simulations were 

initiated in the same manner as the ID simulations, with a high speed flow impinging upon 

a wall, resulting in a shock propagating in the opposite direction. The difference being, 

however, that the 2D simulations required an initial perturbation to initiate disturbances in 

the transverse direction. While such disturbances can have any number of origins in an actual 

shock tube4, such disturbances must be explicitly included in the numerical experiment as 

small perturbations. Such perturbations must be sufficiently random and weak as to not 

overshadow the dynamics inherent in the model, yet strong enough to initiate pressure 

disturbances that can essentially be picked up and amplified by the (GE). 

Simulations have been performed for two of the cases, including Mach 14.7 and 16.5. 

All simulations shown were run on a Cartesian mesh with Ax = Ay = 0.33 mm and have 

taken into account excited levels from only the 4s manifold of neutral argon. It was shown 

in the ID simulations that although higher levels are required to obtain good agreement in 

the radiative cooling region, the induction zone is for the most part unaffected. Therefore, 

neglecting the levels beyond those conatined in the 4s manifold should have negligible effect 

on the overall dynamics. 

The actual width of the UTIAS shock tube was 17.78 cm with a depth of 10.16 cm [18]. 
Including turbulence, boundary layer effects, Avail irregularities, etc. 
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Figure 10.12: Numerical setup for 2D unsteady shock tube simulations. 

10.4     Mach 16.5 case 

Figure 10.13 shows the evolution of the Mach 16.5 ionizing shock from a nearly planar wave 

to a self-sustaining oscillating pattern. The initial perturbation, visible as a half-sine wave 

bulge in the shock front, generates transverse waves that are apparently random in nature. 

After propagating a few centimeters, however, the waves begin to oscillate with a resonant 

frequency, creating the strong incident and reflected shock pattern that is clearly visible. 

Figure 10.4 provides snapshots of the same simulation at a later time as generated by two 

different visualization techniques. From the finite-fringe interferogram, it is clear that the 

simulations have produced corrugations in the shock front similar to the UTIAS experiments. 

The refractive index plot further reveals a well-defined structure behind the shock, having 

a periodic nature in the transverse direction. From an investigation of the wave structure it 

was determined that the shock front actually consists of incident and reflected shocks as well 

as Mach stems, the intersection of which forms a series of triple points. These nodes appear 

in a quite regular pattern in both the longitudinal and transverse directions, indicating a 

resonant phenomenon. The triple points are a source of significant vorticity, the trace of 

which, given in Figure 10.15, highlights a cellular structure, remarkably similar to detonation 

cells. These analogous ionization cells, bounded by the trace of triple points, initiate at the 

intersection of two triple points which causes a high-temperature node. This node can be 

thought of as a two-dimensional analog to the one-dimensional electron avalanche. The 

resulting pressure wave generated by the increase in electron number density at this point 
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Figure 10.13: Evolution of Mach 16.5 shock, showing transition from 2D planar shock to 
oscillating shock. The perturbation seen in the first frame triggers transverse waves that 
initially appear random, but develop into a definite. Colormap: min H     H max 
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Figure 10.14:  Simulated interferogram and refractive index for 2D Mach 16.5 shock.   The 
shock front consists of incident and reflected shock waves. Colormap: min H       I max 

Figure 10.15:   Trace of triple points for Mach 16.5 case exposing ionizing cell structure. 
Brighter regions correspond to stronger flow vorticity. 
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Figure 10.16: Simulated interferogram and refractive index for 2D Mach 14.7 shock. Col- 
ormap: min H      I max 

travels radially outward, as indicated by the trace of triple points. 

10.5     Mach 14.7 case 

The case of a Mach 14.7 shock was also simulated, and from the snapshots in Figure 10.16, 

as well as the simulated soot trace in Figure 10.5, it is clear that decreasing the Mach num- 

ber has increased the cell size in both the longitudinal and transverse directions. A direct 

comparison of the experimental and simulated results for the Mach 14.7 case is presented in 

Figure 10.5. As can be seen, the shock structure is well-predicted by the numerical simula- 

tions, with similar relaxation lengths and discontinuous gradients in the electron avalanche 

region along the transverse direction. 

A comparison between the shock structure of the refractive index and features of the 

experimental interferogram in Figure 10.19 indicate the two match well. Well enough, in 

fact, that a similar shock structure can be overlaid upon on the experimental results showing 

excellent agreement and compatibility with the visible structures. In particular, the pattern 
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Figure 10.17:   Numerical soot trace for Mach 14.7 case, exposing ionizing cell structure. 
Image was made by super-imposing instantaneous snapshots of the shock front. 

Figure 10.18: Direct comparison of experimental and numerical results for Mach 14.7 shock. 
Clearly evident are the corrugations in the compression shock as well as unique formation 
patterns in the electron avalanche which are accurately reproduced by the solver. 

of incident and reflected shocks is clear in the fringe shifts of the interferogram. 

10.5.1     Cell size approximation 

Estimation of the 2D cell size was also provided in [21], based on an extension of the ID 

periodicity calculation.   In particular, it was determined that the longitudinal periodicity 
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Figure 10.19: Details of the 2D ionizing shock structure for the Mach 14.7 case. The exper- 
imental shock structure can be inferred from a comparison of the simulated interferogram 
and refractive index plots. Incident and reflected shocks are evident in the shift in fringes 
in the induction zone. 

must equal the transverse wave propagation time across the height (y-dir) of one complete 

cell. The cell width can therefore be estimated by 

(lOi 

where the bulk velocity in the transverse direction behind the shock, V2, is assumed to be 

zero. Using the periodicity as determined in the ID Mach 15.9 simulations, the periodicity 

of the Mach 14.7 and 16.5 cases can roughly be approximated by 

Ma l1 

(10.9) 
Ma1 I 

From this it is found T'MCL1A 7 ~ 77 /isec and r'Mal6 5 ~ 28 fisec. Plugging these values into 

Eq. 10.8 gives #Mai4.7 — (2658 m/s) (77 /xsec) ~ 20 cm and #Mai6.5 — (2973 m/s) (28 ^sec) ~ 

8.3 cm. The predicted cell height for the Mach 16.5 case agrees favorably with the numerically- 

observed value of 7.2 cm, while there is a bit of over-prediction for the Mach 14.7 case with 

a maximum observed value of just under 14 cm. 
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CHAPTER 11 

IONIZING FLOW PAST A CIRCULAR CYLINDER 

Furthermore, with similar structures between ionizing shocks and detonation waves, 

With the numerical solver proven capable of reproducing the detailed shock structure 

and dynamic behavior observed in the UTIAS shock tube experiments, it was a natural 

progression to apply the solver to other flow configurations. Of particular interest, an 

extension of the solver to external flows is suggested by a series of experiments performed 

by Lehr [64] of a projectile fired into a hydrogen-oxygen mixture, producing a detonation 

shock front with nearly identical oscillating wave patterns as that of the ID ionizing shock 

simulations (cf. Figure 11.1). With such similar behavior between detonations and ionizing 

shocks as detailed in the previous chapter, the Lehr experiments open the possibility of 

oscillating ionizing shock fronts in external flow cases. 

11.1     Numerical results 

To test this theory, the flow solver has been applied to a single quadrant of a circular cylinder 

with a mesh defined by the transformation, 

x=(Rx-(Rx-Ro)£)caa0 (11.1) 

y=(Ry-(Ry-Ro)£)Bm0 (11.2) 

on the domain £ = [0,1], 0 = [TT, 3TT/2], with Rx = 0.075 m, Ry = 0.14 m, and R0 = 0.05 m. 

While relatively simple in nature, this particular transformation demonstrates the potential 

of the solver to handle non-orthogonal, curvilinear geometries. The topology of the grid and 
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Figure 11.1: Lehr's detonation experiment of a projectile traveling through hydrogen-oxygen 
mixture. Taken from [391. 
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Figure 11.2: Mesh used in computation of fow around cyinder and simulated interferogram. 
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Figure 11.3: Heavy particle and electron temperatures and ionization fraction for fow around 
cyinder. 

resulting domain decomposition are given in Figure 11.2. The actual mesh consisted of 144 

domains, each containing 50 x 50 cells. 

Results for a shock of Mach 18.1 are given in Figure 11.3 for which the free stream 

conditions are given by 

/ u. »        '   5292 [m/s]   » 

Poo 

T \   Joe   ) 

(11.3) 4.08 [torr] 

I    297.8 [K]     / 

The simulation was performed taking into account only the 4s manifold as in the 2D un- 

steady shock tube experiments presented in the previous chapter. The conditions result in 

a relaxation length of 1.45 cm along the stagnation line as seen in Figure 11.4. 

The results in Figures 11.3 represent a truly steady-state solution in which there are no 

oscillations or fluctuations. Such a steady solution is not entirely unexpected and may be 

described as follows. As compared with the pressure waves generated by the heat release 

and specie production in the Lehr experiments, the pressure waves generated by the electron 

avalanche are relatively weak. As a consequence, any pressure disturbances are quickly 

convected past the cylinder, without the possibility of interacting with the compression 
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Figure 11.4: Temperature profiles and ionization fraction taken at 9 = 0 for flow past 
cylinder. 

shock. This result, however, does not preclude the possibility of such oscillations for external 

flows involving other geometries. Increasing the bluntness of the geometry may serve to trap 

the pressure waves so that they are able to overtake the shock. Investigation of alternate 

geometries is planned as a part of future work. 

11.2     Excitation temperatures 

With the number densities of all the excited states known, the degree of non-equilibrium 

can be assessed in terms of the excitation temperature between levels i and j as defined in 

terms of the Boltzmann distribution, 

T, — In ' 
9f> 

(11.4) 

As can be seen from Figure 11.5, the excited states are over-populated just behind the 

compression shock but quickly reach near equilibrium with the electron temperature shortly 

thereafter. Equilibrium holds constant until the flow passes near the top of the cylinder at 
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which point the plasma cools as it expands, resulting in an over-population of the excited 

states once again. 

Although not modeled beyond the apex of the cylinder, the flow will continue to expand 

rapidly in such a region, resulting in a cold plasma far from equilibrium conditions. The rapid 

expansion will lead to near-vacuum conditions, making the CR model especially important as 

the population of the levels will be far from Boltzmann equilibrium. Accurate simulation of 

the flow conditions in this radiative cooling region is not trivial and, if not treated properly, 

the governing equations may lead to erroneous temperature prediction. This is a result 

of the near-vacuum conditions leading to poor conditioning of the governing equations as 

discussed in Chapter 8. Application of the techniques discussed therein to this problem is 

planned as a part of future work. 
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Figure 11.5: Equivalence temperatures of the first four excited levels relative to the ground 
state. 
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CHAPTER 12 

PARALLEL FRAMEWORK 

12.1     Introduction 

Java is a highly attractive language for developing high performance computing (HPC) 

applications. Extensive thread support is built into the language, allowing programs to har- 

ness the power of multi-core and symmetric multiprocessing (SMP) hardware. The Remote 

Method Invocation (RMI) API allows seamless interaction with remote objects, simplifying 

the development of distributed applications. Java is inherently object-oriented, allowing 

key abstraction of various network environments. And its platform independence makes it 

ideal for distributing applications over heterogeneous computing platforms, thus maximizing 

hardware resources. 

Making extensive use of these features, we have developed a distributed framework tai- 

lored for explicitly parallel, Single Program, Multiple Data (SPMD) programming applica- 

tions on clustered networks. In particular, the framework is aimed at solving hyperbolic 

conservation laws and other problems in which parallelization can be accomplished via do- 

main decomposition—the process by which the physical or solution domain is divided into 

multiple computation domains (see Figure 12.1). These computation domains encompass 

instruction sets necessary for advancing the solution in time or achieving a steady-state solu- 

tion and are executed concurrently and asynchronously through an iterative cycle with only 

periodic communication and synchronization requirements. Furthermore, the domain de- 

composition is overlapping such that each domain can communicate by exchanging boundary 

information with its neighbors. 

The framework is implemented 100% in Java, maintaining independence of computing 

platforms for which the Java Virtual Machine (JVM) is available. This maximizes available 
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Figure 12.1: Domain decomposition process. Solution domain is decomposed into multiple 
computation domains from which new threads are created. 

computing resources with a minimum of programming effort and required maintenance. The 

framework relies upon Java threads in order to optimize performance on shared-memory 

machines. Each computation domain executes within its own lightweight process (LWP), 

created by spawning new threads. The resulting threadpool is distributed over multiple 

servers. Communication between different servers is based on the client-server paradigm and 

relies upon the Remote Method Invocation (RMI) API for network-based communication. 

RMI is used to exchange boundary information from one domain object to another over 

the network. Communication must be synchronized and is implemented using concurrency 

constructs that encapsulate Java monitors. 

12.2     Architecture 

Java's distributed computing model is based upon the client-server paradigm. Objects dis- 

tributed over client and server machines communicate with each other through Remote 

Method Invocation (RMI) protocols, allowing seamless interaction between applications. 

Programming with distributed objects greatly simplifies the development process and pro- 

vides a natural extension of object-oriented programming to distributed environments. Be- 

cause of its inherent simplicity, RMI is used as the basis for designing the framework around 

the client-server paradigm. Employing a request-response protocol, orchestrated with the 

aide of concurrency constructs, the framework allows interaction and communication be- 

tween computation domains distributed over a network. Here we discuss the roles of clients 

and servers within the framework and extensions to a multi-tier implementation. 

126 

E-146 



12.2.1 Client 

From the user's point-of-view, the client is the access point into the entire framework. By 

means of a Graphical User Interface (GUI), the client allows remote-steering of simula- 

tions by the user. The user is able to configure, modify, and visualize the problem and 

solution in real time, all in a user-friendly environment. Before a simulation is initiated, 

problem-dependent tasks such as the set-up and initialization of boundary conditions, initial 

conditions, and numerical solvers can be configured through the client. 

12.2.2 Server 

Servers are responsible for the relevant program execution. This entails funneling criti- 

cal I/O, communication between domains, synchronization, and execution of the domain 

threads. These tasks are divided between two different types of servers, masters and slaves. 

Master servers accept incoming requests and initialize slave servers for the client. Their pri- 

mary function is to distribute the computation domains to slave servers and provide periodic 

barrier synchronization between iteration cycles. Masters in turn initialize slave servers that 

respond to synchronization signals from their master to begin a cycle of program execution, 

returning signals when completed. 

A simple master-slave interaction is demonstrated in Figure 12.2. A master server dis- 

tributes computation domains among multiple slave machines and requests for the advance- 

ment of the solution for a given time step. During this time, the servers may communicate 

with each other, requesting critical I/O such as domain boundary information. The client 

then awaits for their successful completion via signals from each of the servers, at which 

time it may request for solution results. The entire process is then repeated until the final 

solution is achieved. 

This two-tier model demonstrates horizontal scalability, in which the bottom tier is 

expanded to accommodate the computational load requested by the master. This assumes 

that the master has direct access to all possible hardware resources. However, this may 

not always be the case. A master may want to tap into the resources of a Beowulf cluster 

for example, but may only do so through the head node of the cluster. In such a scenario, 

the head node assumes a dual role of accepting part of the computational workload from 
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Figure 12.2: Master-slave configurations. In (a), a single Master node distributes workload 
among 3 slaves. In (b), Master 2 controls Slaves 1 and 2, but is itself a slave to Master 1. 

the master as well as distributing the load to its available nodes. This is an example of a 

three-tier model and is depicted in 12.3 below. 

In order to support both horizontal and vertical scalability, the framework has been 

generalized to a multi-tiered, client-master-slave model. In a multi-tier network, servers can 

simultaneously function as both masters and slaves, far more hardware and networking envi- 

ronments can be used. Furthermore, horizontal scalability cannot be sustained indefinitely, 

and will eventually present a bottleneck for massively-parallel applications. Vertical scala- 

bility can be used to funnel I/O through multiple tiers, effectively reducing I/O bandwidth 

at each tier. The disadvantage is that multiple requests may need to be made in order to 

obtain the same response, increasing network latency time. 

12.2.3     Tree Model 

In the current architecture, the multi-tier client-server paradigm is implemented through 

a tree-based abstraction. As illustrated in Figure 12.3, each node in the system can be 

represented as either a Root, Branch, or Leaf object. The standard tree terminology is also 

adopted in the following descriptions, including parent, child, sibling, etc. 

Root 

The Root node is the information focal point of the tree data structure. As such, for 

every network tree there can exist a single root node.   It functions as a global master by 
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Figure 12.3: Tree abstraction, (a) Root, Branch, and Leaf are subclasses of Node, (b) 
Example configuration: A represents the Root node; B, C, D, E, F, I, T, and M represent 
Branch nodes; and J, G, H, K, N, O, and P represent Leaf nodes. 

synchronizing its child nodes. It is also the access point for the client to the entire framework. 

The root node can have as children any combination of branches or leaves. The root node has 

no parents but listens for data requests from the client for such tasks as visualization. The 

Root node is used as a central location for configuration files as well as mapping information 

about which domains belong to which servers. 

Leaf 

Terminal nodes in the network tree are called leaves and cannot have child Nodes. The 

primary function of a leaf is to host computational domains which handle the computational 

workload. 

Branch 

A branch assumes the same responsibilities as those of both root and leaf nodes. The branch 

must wait until signaled by its parent node (either a Root or Branch node) and in turn must 

signal its child nodes (either Leaf or other Branch nodes) and finally wait for its children 

to finish their tasks. While it is possible, it is not necessary for a branch node to have 

computational domains. If it does, however, it must also signal and wait for the domains. 

12.3     Communication 

With computation domains distributed over a multi-tiered, heterogeneous network, commu- 

nication becomes of critical importance. In the current framework, there are three primary 

types of information which must be communicated between different nodes in the network. 

These include 
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(i) boundary information shared between domains 

(ii) global information 

(iii) signals for thread communication and cooperation 

In all three cases, Java RMI is the protocol used to establish a connection between the 

nodes, allowing objects to interact and share data. Here we provide details on the exchange 

process of boundary and global data. Thread communication is an integral part of the 

synchronization process and is discussed in the next section. 

12.3.1     Boundary Communication 

Continuity of the solution domain is left fragmented after the domain decomposition process. 

To restore continuity, each computation domain must exchange its boundary information 

with its neighbors during program execution. For time-accurate simulations, this translates 

into one or more boundary communications per time step. 

In the current framework, boundary information is passed from one domain to another 

within buffer objects. Source buffers are used to store boundary information which originates 

on the local domain and is to be sent to the remote domain. The domain on the receiving 

end of the source buffer stores it locally as a "target" buffer. The information from the 

target buffer is then used to fill the ghost cells of that domain. This process is illustrated 

in Figure 12.4. 

A partial listing of the Buffer class implemented in the current framework is given below. 

Along with fields for storing the boundary information of the domain, the Buffer class also 

contains all necessary information to ensure that data is transferred and received in the 

proper order. This includes information about the source and target pairs for the domain, 

cell, and face indices. Encapsulating this information within the Buffer class greatly sim- 

plifies implementation of dynamic load balancing. Sending this information each exchange 

may seem extraneous and unnecessary, but the overhead is negligible since the performance 

limitation is based on the time it takes to make a remote call overshadows the time it takes 

to transfer the extra data. This "connectivity" information tells the local domain how to fill 

the buffer and how the remote domain extracts data from the buffer is determined a priori 
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Figure 12.4: Domain Buffers are used to transfer data from the boundary layers of the source 
domain over the network and into the ghost layers of the target domain. 

by the preprocessor. To be transferable via the RMI protocol, the Buffer class implements 

java.io.Serializable. 

Before a method call is made to transfer the data, a check is in place to determine if 

the source and target domains exist within the same JVM. If so, a remote method call is 

initiated, otherwise a local call is made. 

Listing 12.1: Buffer 

public   class   DomainBuffer   implements   java.io.Serializable 

{ 

public   int   sourceDomain ; 

public   int   targetDomain ; 

public   int    sourceFace [] ; 

public   int    targetFace [] ; 

public   int    sourceCell [] [] ; 

public   int    targetCell [] [] ; 

public   double [][][][]   Q; 
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} 

Buffer objects can either be pushed from the source domain to the target domain by a 

set() method or pulled from the source domain by the target domain by a get() method. 

This may seem like a trivial choice, but proper implementation of the two methods can 

be quite different, with one resulting in performance gains over the other. To analyze the 

differences between a push and a pull, we present two scenarios. The first case represents 

a push by the source domain while the second is a pull by the target domain. Both cases 

represent the steps taken by each domain during a complete time step with all domains 

assumed to be synchronized at the start the iteration. 

Cycle I: 

(i) Begin time step n. 

(ii) Fill ghost cells with target buffer data, 

(iii) Advance solution to time n+1 

(iv) Fill source buffer with boundary cell data corresponding to time level n+1. 

(v) Send source buffer to target domains, 

(vi) End Iteration. 

Cycle II: 

(i) Begin time step n. 

(ii) Get buffer from source domain, 

(iii) Fill ghost cells with target buffer data. 

(iv) Advance solution to time n+1 

(v) Fill source buffer with boundary cell data corresponding to time level n+1. 

(vi) End Iteration. 
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Figure 12.5: Push vs. Pull. Domain buffers can be transferred by either (a) a pull from the 
source domain by the target domain or (b) a push from the source domain to the target 
domain. 

Note that the push at the end of the iteration by the source domain in Cycle I becomes 

a pull by the target domain at the beginning of the iteration in Cycle II. For the pull taking 

place at the beginning of the time step, it is more likely that all domains will attempt to 

get their boundary information at the same time, leading to a possible I/O bottleneck. This 

is less of an issue for a push, however, since it is less probable that all domains will finish 

their cycle at the exact same moment. This means that the domains will likely perform 

the push during a time when they would otherwise be idle, waiting for the final domain to 

finish its cycle. The chances for the remote calls being staggered in time is much greater, 

thus maintaining a higher level of asynchronicity. The degree of this effect is dependent 

upon how many domain threads are executing on each server and the thread scheduling 

characteristics of the operating system. 

It is important to note that there exists the potential for synchronization issues with 

both of the above schemes. If either of the cases are not implemented properly, a critical 

race condition may ensue. In both scenarios, it is possible for the source domain to have 

completed its iteration before the target domain has even begun. In this situation, the target 

domain will attempt to fill its ghost cells with buffer data from an incorrect time step—the 

next one (n+1). 

This race condition can be remedied by storing the buffers on each domain in a First- 

In-First-Out (FIFO) queue as illustrated in Figure 12.6. For Cycle I, as 12.6 illustrates, 

as source buffers are pushed to the target domain, they are added to the top of the buffer 

queue. The target domain then extracts these buffers from the bottom of the queue, ensuring 
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Figure 12.6: FIFO buffer queue. FIFO buffer queues on the receiving end of a push from 
the source domain are used to ensure correct synchronization of data between iterations. 

that buffers of different time steps are effectively separated. The fix for Cycle II is similar, 

necessitating a FIFO buffer queue on the source domain from which the target domain pulls. 

In the current framework, the buffer queue is implemented with the java.util.-LinkedList 

class that provides such FIFO access. Since the object can be accessed by more than one 

thread, we must ensure that its methods are synchronized. This is accomplished by creating 

the LinkedList object in conjunction with the Java.util. Collections.synchronizedList() static 

method. 

12.4     Synchronization 

The end of Moore's Law has ushered in a new era of symmetric multiprocessor (SMP) and 

multi-core platforms. As a result, successful applications must be able to exploit inherent 

parallelism to take advantage of the processing power available from all cores/processors. 

As a thread-based language with support for mutual exclusion and thread cooperation built 

in, Java is ideal for developing parallel applications on shared-memory machines. Any 

object (and corresponding class) can be locked by a thread that enters either a synchronized 

method or synchronized statement of that object. Once inside a synchronized region, a 

thread blocks all others from accessing any field or method. While a thread maintains a 

lock on an object, inter-thread communication and coordination is possible through the 

wait/notify mechanism. A thread can either invoke the wait() method, in which case the 

thread releases its hold on the object and allows for the possibility that another thread may 

enter and obtain a lock, or it can invoke the notify() method as it leaves the synchronized 

region, to signal to awaiting threads that the object has become available. 
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The wait/'notify mechanism provides the essentials for thread coordination, provided that 

critical sections are encapsulated within a synchronized region. For a domain decomposition- 

based parallelization scheme, a particular example of a critical section is code that accesses 

the buffer data objects. Since multiple buffers are accessed by multiple threads through 

get/set methods, explicitly encapsulating this critical code in synchronized regions can 

quickly lead to a complicated implementation that is difficult to understand. Furthermore, 

the wait/ notify mechanism is a low level concurrency construct which does not guarantee 

against deadlock conditions. 

As an alternative, the wait/notify mechanism itself can be encapsulated within a higher- 

level lock construct. Critical code can then interact with this construct, thereby invoking 

the wait/ notify mechanism implicitly. The lock construct implemented in the current work 

is based on the BooleanLock utility of Paul Hyde [55]. BooleanLock is a shared class that 

encapsulates a boolean variable that can be accessed only through several synchronized 

methods. The boolean variable is a thread-safe condition variable upon which threads 

can wait for other thread to change its state to either true or false. Encapsulation of the 

wait/notify mechanism is provided in such a way that it is also thread safe, eliminating the 

possibility of deadlock conditions. 

Listing f2.2: BooleanLock Utility 

public   class   BooleanLock 

{ 

private   boolean   value ; 

public   synchronized   boolean   get () 

{        return   value; 

} 

public   synchronized   void   set (boolean   value) 

{        this.value   =   value; 

notifyAll (); 

} 

public   synchronized   void   waitUntil (boolean   value) 
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throws   InterruptedException 

{        while (   this . value   !=   value    ) 

wait () ; 

} 

} 

Within the framework, BooleanLock is used to synchronize several processes including 

initialization of the simulation, computation cycles, and visualization just to name a few. A 

unique lock is associated with each process for each thread. BooleanLock is further encap- 

sulated within the NodeSync class listed below which is used directly within the framework. 

It provides methods to set, query, and wait on the state of individual threads as well as 

groups of threads. The NodeSync class also allows locks to be stored in java.util.TreeMaps 

so that they can easily be accessed through unique IDs. 

Upon the completion of an iteration, each domain must wait for the final domain to 

complete its computations before the cycle can continue. This form of barrier synchroniza- 

tion is implemented by looping over all domain locks and waiting until each lock has been 

released. This is accomplished in the code by invoking waitUntil(DOMAINS, RUNNING, 

false) at any point in the code where all domains must be synchronized together. 

Listing 12.3: NodeSync 

public   class   NodeSync   implements   NodeSyncInterface 

{ 

private int Nchildren ; 

private int Ndomains; 

private int Nproxies ; 

private   Lock[]    clientLock ; 

private   Lock[]    localLock ; 

private  Map<Integer ,   Lock[]>      childLock  = 

new  TreeMap<Integer ,    Lock [] >(] 

private  Map<Integer ,   Lock[]>   domainLock  = 
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new  TreeMap<Integer ,    Lock [] >(); 

private  MapKlnteger ,   Lock[]>      proxyLock  = 

new  TreeMap<Integer ,    Lock [] >(); 

public   void   set ( Identifier    identifier ,    int   state ,   boolean   value) 

throws   RemoteException 

{ 

switch ( identifier ) 

{        case  CLIENT: 

clientLock[state]. set(value); 

break; 

case  LOCAL: 

localLock [state]. set(value); 

break; 

case  CHILDREN: 

for(Lock[]    lock    :    childLock . values ()) 

lock [state], set(value); 

break; 

case  DOMAINS: 

for (Lock []    lock    :    domainLock . values ()) 

lock [state], set(value); 

break; 

case  PROXIES: 

for(Lock[]    lock    :    proxyLock . values ()) 

lock [state], set(value); 

} 

} 

public   void   set ( Identifier    identifier  , 

int   index ,    int   state ,   boolean   value) 

throws   RemoteException 
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{ 

switch ( identifier ) 

{        case  CHILD: 

childLock . get (index ) [ state ] . set (value ) ; 

break; 

case DOMAIN: 

domainLock . get (index ) [ state ] . set (value ) ; 

break; 

case PROXY: 

proxyLock.get(index ) [state]. set(value); 

break; 

} 

} 

public   boolean   is ( Identifier    identifier ,    int   state) 

throws   RemoteException 

{ 

switch ( identifier ) 

{        case  CLIENT: 

return clientLock [ state ]. get () ; 

case PARENT: 

return parentLock [ state ]. get () ; 

case  LOCAL: 

return   localLock [ state ]. get (); 

} 

} 

public   boolean   is ( Identifier    identifier ,    int   index,    int   state) 

throws   RemoteException 

{ 

switch ( identifier ) 

{        case  CHILD: 

return   childLock . get (index ) [ state ] . get () ; 
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case DOMAIN: 

return   domainLock . get(index) [ state ] . get (); 

case PROXY: 

return   proxyLock.get(index)[state]. get (); 

} 

} 

public   boolean   are ( Identifier    identifier  ,    int    state) 

throws   RemoteException 

{ 

switch ( identifier ) 

{        case  CHILDREN: 

for(Lock[]    lock    :    childLock . values ()) 

if(    !lock [state ]. get ()    ) 

return   false; 

return   true; 

case  DOMAINS: 

for (Lock []    lock    :    domainLock . values () ] 

if(    !lock [state ]. get ()    ) 

return   false; 

return   true; 

case  PROXIES: 

for(Lock[]    lock    :    proxyLock . values ()) 

if(    !lock [state ]. get ()    ) 

return   false; 

return   true; 

} 

} 

public   void   waitUntil ( Identifier    identifier , 

int   state ,   boolean   value) 

throws   RemoteException ,    InterruptedException 

{ 

139 

E-159 



switch ( identifier ) 

{        case  CLIENT: 

clientLock [ state ] . waitUntil (value ) ; 

break; 

case  LOCAL: 

localLock [ state ] . waitUntil (value ) ; 

break; 

case  CHILDREN: 

for(Lock[]    lock    :    childLock . values ()) 

lock [ state ] . waitUntil (value ) ; 

break; 

case  DOMAINS: 

for (Lock []    lock    :    domainLock . values () 

lock [ state ] . waitUntil (value ) ; 

break; 

case  PROXIES: 

for(Lock[]    lock    :    proxyLock . values ()) 

lock [ state ] . waitUntil (value ) ; 

} 

} 

public void waitUntil ( Identifier identifier , 

int index , int state , boolean value) 

throws   RemoteException ,    InterruptedException 

{ 

switch ( identifier ) 

{        case  CHILD: 

childLock . get (index ) [ state ] . waitUntil (value ) : 

break; 

case DOMAIN: 

domainLock . get (index ) [ state ] . waitUntil (value 

break; 

case PROXY: 
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Figure 12.7: Synchronization convention. Synchronization calls between a child node and 
its parent are accomplished through the Sync implementation on the parent and the Sync 
interface of the child. 

proxy Lock . get (index ) [ state ] . waitUntil (value ) : 

} 

The elegance of the BooleanLock/'NodeSync combination is that it not only simplifies 

local thread coordination (reducing the chances of error-prone code), but it is easily ex- 

tended to coordinate communication between remote threads via RMI. As can be seen from 

the NodeSync listings above, NodeSyncInterface extends Java.rmi.Remote, making its im- 

plemented methods invokable from remote JVMs. Threads on one JVM can transparently 

set, query, and wait for thread states on an entirely different JVM. The NodeSync class is 

the basis for distributed-shared memory (DSM) computing in the current architecture. 

Each Node in the network has its own local instance of NodeSync as well as a NodeSync- 

Interface proxy corresponding to the NodeSync implementation of its parent Node. As 

illustrated in the Figure 12.7, the convention adopted in the framework is for a Node to 

communicate with its parent through a NodeSyncInterface proxy. A Node then communi- 

cates with its child through its local NodeSync instance. 

BooleanLock is just one example of a concurrency construct for barrier synchronization. 
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The following IntergerLock could also be used to synchronize multiple domains by incre- 

menting an integer value as each domain obtains a lock and then decrementing the value 

upon release of the lock. This could result in a more efficient implementation. 

Listing 12.4: IntegerLock 

public   class    IntegerLock 

{ 

private   int   value; 

public   synchronized   int   get () 

{        return   value; 

} 

public   synchronized   void   set (int   value) 

{ this.value   =   value; 

notifyAll (); 

} 

public   synchronized   void   increment () 

{        value++; 

notifyAll (); 

} 

public   synchronized   void   decrement () 

{        value ; 

notifyAll (); 

} 

public   synchronized   void   waitUntil (int   value) 

throws   InterruptedException 

{        while (   this . value   !=   value    ) 

wait () ; 

} 
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Figure 12.8: Global cylce. Interaction between Root and Leaf nodes and associated Domains 
during a global cycle. 

} 

To demonstrate the usage of the NodeSync class, we detail a computation cycle in the 

current framework for a given network configuration. The example considered is a two- 

tier network structure, consisting of a Root node, a Leaf node, and multiple Domains as 

illustrated in Figure 12.8. The stages along with the corresponding methods invoked in 

NodeSync. 

ROOT THREAD: 

(i) wait until proxies have released their locks —• sync.waitUntil(PROXIES, RUNNING, 

false) 

(ii) get time step from proxies and compute global time step 

(iii) lock each proxy -• sync.set(PROXIES, RUNNING, true) 
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PROXY THREAD: 

(i) wait until lock is obtained -> sync.waitUntil(PROXY, 0, RUNNING, true) 

(ii) get global time step 

(iii) lock child Node (Leaf) -> sync, set (CHILD, 0, RUNNING, true) 

(iv) wait until child has released its lock —• sync.waitUntil(CHILD, 0, RUNNING, true) 

(v) get time step from child 

(vi) release lock -• sync.set(PROXY, 0, RUNNING, false) 

LEAF THREAD: 

(i) wait until lock is obtained -> syncIF.waitUntil(CHILD, 0, RUNNING, true) 

(ii) get global time step 

(iii) lock domains -» sync.set(DOMAINS, RUNNING, true) 

(iv) wait until domains release their locks —> waitUntil(DOMAINS, RUNNING, false) 

(v) get time step from domains 

(vi) release lock -• syncIF.set(CHILD, 0, RUNNING, false) 

DOMAIN THREADS: 

(i) wait until lock is obtained —> sync.waitUntil(DOMAIN, n, RUNNING, true) 

(ii) get global time step 

(iii) fill ghost cells from target buffers 

(iv) advance solution by time step and calculate new time step 

(v) fill source buffers with boundary data and push to neighbor domains 

(vi) release lock -• sync.set(DOMAIN, n, RUNNING, false) 
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CHAPTER 13 

CONCLUSIONS 

13.1     Achievements and contributions 

The achievements of the present work can be distinctly categorized in terms of both capabil- 

ity and application. In the case of the former, this work has been successful in introducing 

a numerical capability for plasmadynamic simulation that can resolve both transport phe- 

nomena and nonequilibrium effects to a high level of degree. Many advanced ideas have 

been incorporated including nonstandard formulations of the governing equations, such as 

entropy transport, with the aim of obtaining as accurate a solution as possible. A fluid de- 

scription of the plasma has allowed solution of the convective transport by shock-capturing 

Riemann solvers extended to third-order, thus enabling resolution of highly nonlinear wave 

phenomena. The third-order reconstruction scheme has been extended to two-dimensional 

general curvilinear coordinates, allowing reconstruction of the data by quadric surfaces. A 

collisional-radiative model for atomic argon has yielded a database for both elastic and 

inelastic collisions that incorporates the latest cross section data available in the literature. 

Development of the code has been systematic, relying heavily upon benchmarks and sta- 

bility analysis. Stability analysis has further led to better choices for numerical algorithms, 

in terms of efficiency and robustness. Performance has also been addressed and a novel 

parallel framework in Java has been developed in conjunction with the governing equations 

used in this work. 

In regards to application, the current work has made significant contributions to the 

modeling of ionizing shock instabilities. In particular, the current research marks the first 

time that the instabilities in a two-dimensional ionizing shock have been verified through 

direct simulation.    Simulations have produced details of the shock structure, previously 
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unknown, revealing structures that are nearly identical to detonation waves. This opens the 

door for further comparisons between the two phenomena, with the potential to increase 

understanding of 

This has only been possible through a strong coupling between transport and kinetics, 

verifying the capability of the solver to resolve such flows. The instabilities have been shown 

to result from a sensitivity of the kinetics to local changes in the flow properties, and hence 

must be modeled with an accurate treatment of both unsteady transport phenomena and 

nonequilibrium kinetics. 

The same cellular structure resulting from a highly exothermic detonation wave can be 

observed in an endothermic system. In a detonation system the temperature increase in the 

induction zone is provided by the energy release from the chemical bonds. In an ionizing 

shock, however, the heavy particles act as the source of energy that enables the rise in 

electron temperature. In either case it is this temperature rise to which the kinetics are 

sensitive to. 

The numerical experiments have also resulted in an improved description of the kinetics. 

While previous attempts to model relaxing shocks in argon have relied on limited kinetic 

models, this work has applied a fairly detailed collisional-radiative model that has enabled 

some key conclusions to be drawn. While assuming the argon plasma to be optically-thin to 

all radiative transitions except to the ground state, it has been found that inclusion of excited 

levels from the 4s, 4p, 5s, and 3d manifolds is sufficient to obtain excellent agreement with 

the experimental results for the radiative-cooling region. Results for the induction zone and 

electron avalanche regions, however, indicate that the levels beyond the 4s manifold have 

very little effect. 

13.2     Suggestions for future work 

While the solver has been applied to unsteady ionizing shock phenomena with excellent 

results, there is still room for improvement starting with the collisional-radiative model. 

In particular, it was shown in [19] that molecular argon processes including associative 

ionization, atomic-to-molecular ion conversion, and dissociative recombination can have a 

large effect on the overall kinetics. Such processes are sure to influence the relaxation 

scales associated with relaxing shock layers, including the relaxation length in the current 
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simulations. This is especially important when considering the atom-atom impact excitation 

cross sections. The two-step process of atom-atom impact excitation followed by atom-atom 

ionization is the only method considered in the current work for generating priming electrons 

just behind the compression shock. Inclusion of the molecular argon processes are sure to 

require modifications to the atom-atom impact cross sections and should be done so before 

any claims as to the proper value of the atom-atom impact excitation cross sections can be 

made. 

Improvements can also be made to the collisional-radiative model by extending its 

nonequilibrium effects to include a non-Maxwellian electron energy distribution function. 

This may be important for a more accurate representation of the high-energy region (11— 

16 eV) of the distribution function from which electrons are selectively removed as deter- 

mined by excitation and ionization thresholds. 

Also an open issue is the opacity of the plasma to the various radiation sources involved. 

It has been assumed that all radiation from higher states to the ground level of argon are 

absorbed locally while radiation resulting from all other transitions escapes the system. 

These assumptions have been based on rough estimates of the radiation mean-free path, 

and in order to validate or nullify these assumptions, solution of the radiation transport 

equations should be coupled with the solver. While this can be quite a challenge even in two 

dimensions (let alone 3D), a one-dimensional implementation may be all that is necessary 

to verify these assumptions or to determine the proper escape factors if necessary. 

Glass and Liu noted that with the existence of similar instabilities in both ionizing 

shocks and detonation waves, developing a stabilizing mechanism for one system may lead 

to similar for the other. While doping with hydrogen and other impurities were shown both 

experimentally and numerically [21] to suppress these instabilities, it would be of interest to 

determine if other approaches can lead to the same effect. In particular, studies can be done 

to determine if magnetohydrodynamic effects can be applied suppress these oscillations. 

An attempt has been made to induce the same type of instabilities in an external flow 

situation. Although unsuccessful, an extension to alternate geometries could prove successful 

in generating oscillations and could lead to open the door to a new set of experiments for 

further code validation. 

The UTIAS experiments also resulted in unique boundary layer phenomena caused by 

147 

E-167 



the interaction of viscous and nonequilibrium effects. While water vapor impurities on the 

surface of the shock tube were known to exacerbate these effects [], a straight-forward inclu- 

sion of the viscous terms in the governing equations should allow for the direct simulation of 

the boundary layer. Reproducing such effects and validating a viscous solver can result in 

a capability for accurate determination of boundary layers necessary for prediction of heat 

fluxes, drag, etc. 
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APPENDIX A 

EIGENSYSTEM 

A.l     Two-Temperature eigensystem 

With the thermodynamics properties derived, it is now possible to derive the eigensystem 

for the two-temperature model. The final vector form of the two-temperature model results 

when the electron energy equation is combined with the overall conservation equations, 

Q 
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/ 

With these vectors, the determination of the flux Jacobian matrix A and its correspond- 

ing eigensystem (cf. Eq.(2.10)) can be found in a staright-forward manner. The similarity 

matrices defined by Eqs. (2.14) and (2.14) are found to be 
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The conservative variable flux Jacobian matrix is found to be 
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where 

APi,E = uPpi - u(E + p)/p 

Amx,E = uPm:i; + (E +p)/p. 

from which the primitive variable Jacobian can be obtained using the similarity transfor- 

mation, 
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Since the eigenvalues of Ap    are u,u ± a, the thermal speed of sound can be determined 

using the following matrix identity, 
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yielding, 

a2 = J2 VsPPs +(s+p/p-u- u/2)PE + sePs 

The subsequent right eigenvectors are given by 
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which can be inverted to obtain the left eigenvectors, 
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(A.9) 

The eigenvalues which are identical for both the conservative and primitive Jacobians are 

given by 
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The eigensystem is transformed from the primitive back to the conservative formulation 

once again using the similarity matrices. The conservative right eigenvectors are found to 

be 
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while the conservative left eigenvectors take the form, 
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A.2     Two-Temperature MHD eigensystem 

As done for the two-temperature hydrodynamic equations, the eigensystem is now presented 

for the two-temperature MHD equations. Although not strictly hyperbolic, the MHD equa- 

tions are always diagonalizable. In the absence of magnetic fields, the fast magnetoacoustic 

waves become thermal acoustic waves while the Alfven waves collapse onto the slow mag- 

netoacoustic waves, producing the shear waves of the basic fluid equations [97]. This may 

lead to singularities in the eigensystem and was first addressed by Brio and Wu [17] in their 

development on an upwind solver. Renormalization parameters were introduced that were 

further refined by Roe and Balsara et.  al. [97] and Barth [6]. 
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Similarity transformation matrices 
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V 0 p 0 0 0 0 0 0 

w 0 0 p 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 1 0 0 

••     EPn Eu Ev Ew EBX EBy EBZ Ep Ep 

^ep„ ^eu £>ev *->ew SeBx 
SeBv Seß, Jep Jep 

(A.17) 
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(A.18) 
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Primitive flux Jacobian matrix 

APx = M~XAXM 

u .    0 Pl 0 0 0 0 0 0 0 

0    . u p» 0 0 0 0 0 0 0 

0    . .    0 u 0 0 0 By 

PP-o PPo 
1 0 

0    . .    0 0 u 0 0 __ Bx 

PPo 
0 0 0 

0    . .    0 0 0 u 0 0 __ß2L 

PPo 
0 0 

0    . .    0 0 0 0 u 0 0 0 0 

0    . .    0 B!J —Bx 0 0 u 0 0 0 

0    . .    0 Bz 0 —Bx 0 0 u 0 0 

0    . .    0 pa2 0 0 0 0 0 « 0 

0    . .    0 lePe 0 0 0 0 0 0 u 

(A.20) 

where a2 is the thermal sound speed and is independent of the magnetic pressure, 

J2 VsPPs +(s+p/p-u- u/2)PE + sePs (A.21) 
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Diagonal matrix of eigenvalues 
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(A.22) 

160 

E-180 



co 
CM 

< 
CN CM CN] CM 

oo 05 
CM 

o 
co 

< < < <J <; < <J 

o  o   o   o e   cq <=> 

^S, ^ ^ij,Tca T^ Tc^    • 
T^T^T^    XXX    TcET 

X     X     X    Ä    ie.    A     X 

c 

a 

r^TQ^T^   x     x     x   A 
o   x   x   x   <e    <e    <g   T(^ o 

*• -   . *~.    . *"- I    nl   _     I    nl   _     I    nl   _ 

fi« a« NI» 
^f    ^f    ^T      H »3      a co      N a: 

e  ^   ^     ,     Oi    Oi    Oi    . 
Ä     I        I I  "I o I  "I o  I  °l a    Li° -J 

s s 

"T    ^t    "^     H^    av>     N^ 
S   A    ^     ,     Oi     Oi     Oi    , 

Pi       I I I   nl _    I    nl  _    I   nl _      I 

s   A   ^    ?   Oi    Oi    Oi 

S S 

ss 

cq 

cq 

cq 

cq 

CM a 
Cq 

CM   ~ 

Cq 

Cq 

tCq 

Cq 

CN  ~ 

cq 

e 
cq 

^= 

II 
too 

Cq a. 

CM   s 
a 

CM   •': 

c 

C 

0 
-p 
Ü 
0) 

0) 

o  o   o   o 

«I  0$ 
-H 

«I   0? 

5 
0) 
S3 
Ö 
0 
Ü 

c^ 

161 

E-181 



•TO 

< 

ft?r 
I 

ftf 
s 

I 

;. u 

£ a   OH a ft, a ft, 
tN     <*, CM          !0 CM     « 

Ö a a a 

DH 

63h 
a,|a 
ä 

I 5»   a 

63 63 
"a   ft, 

63 
"a  ft, 

^ a" N  ä N  a 

I 

I 

I 

rc^ „s 'i« N  W 
N|      ^ ^ ^ ^ *~* »     s ; a + 

'o   " 
„ + «       1 

,1      f" 

t<£j_ 

CM <e 

CMtf^ 

X 

ft, 
a ft, Ü, ft, ft, <c !- 

a a a 8 

ft!H 
1 s- 

»H-, 3i fi a w 

•*: ^ ^ Si 
a         S 

1 
S    » 

CM  s 
a   » 

CM   t ,3 f* 
ten. 

CM 'S 

CMtQ^ 
X 

ft, 
ft, 
a 

ft, ft, -_-         <g ^ 
a a 1 

8^ BS H  <n H  a 
^ ^ ^ H H p 

1 

CM   s 

tQ3 

"8x 
CM <e 

CMtc^ 
X 

ft, 
a ft, ft, ft, ft, <c i- 

"•' a a a 8 

I 

I 

N1*-. M »H N   « N  « 

< < <1 0 
1  o 1     ° la. a. la. a. 
|CL [CL. [o. [CL. 

+ + -f + 

£ 
0     CD CM  £ 

0    CO ^o? 
0    CO 

s s s e 

Hi 63 03 63 ft, ft, a, ft, 
=«-, -~> 
Ö Ö a a 

w t) 

X 
CM      x -a' 

<c <s 5J 
8, 

a ll* 0      r^ a. ^ 

< 
pi's 
< 

S>  01 

<l 
a 11) 
<1 

1  ° 
a. 

1   ° 
a. 1    0 

a. 
1    ° 

a. 
|a.~ [a. |a. la. 
+ + + + 

ft,' 
a  CQ a   m ^o? a  © ^ft? 

3i s a 
e 

ft? 
Pi 

ft? ft? 
Ö Ö Ö a 

=• a 

X 
ica 

-   X -ft' 
<c <s aj a, 
a iK 

0 ^ a. ^ 

0 
-p 
Ü 
0) 

0) 

Ü 
0) 

0) 

Ö 
0 
Ü 

I 

I 

= 
CK, ^ 01 w D^ 

Ik'"^ '^ '^ '"! <e ^ 
ft, 1a tp Ta t3 Ta «'S 

e x 

a 
S    1 

Pi      s 

1   ^ 

"M + N       1 
a ', a T -% ^,f- 

^"^ V Nft^ 
oitp X 

is 1 

^      Ö Ö a a _ 
a, 

^ 
«s t, « ü) n.a 

•^ '^ '^ '^ <e 
• C          ~" 

tp 
1 

tp ts 

a ' 

tp 

a ~ 
M*S 
8 X 

^t5J 
CM^ 

CM     X ci   ^ ci   n
rf CMti X | ft, Ü, ft, ft, 

a a a a 
n. 

l 

H1*-. H •*-. H in H fi 

< < <l <1 
i o l ° 1 ° 1    ° la. a. a a. 
|a! la. la la. 

+ + + + 
m i?    63 ,3   63 i?   63 ft, 1.-1 j^1 L<   J^' L< QJ 
R H R H 

e s e e 
R H m 63 63 63 ft, ft, ft, ft, 
^ -~> 
Ö Ö a a 

R H 

X -    X -ft' 
>^ <s 5J 

a 
a 
i|* 

0 £ a. ^ 

H 

162 

E-182 



APPENDIX B 

ISOPARAMETRIC ELEMENTS 

In order to obtain a high-order solution in the finite-volume scheme, it is necessary to 

reconstruct the cell-average values to obtain more a accurate representation of the data. The 

method of undetermined coefficients is one such technique, that requires the basis functions 

to be integrated over the area of the cell. In general coordinates or on unstructured meshes, 

integration over irregular cells becomes a necessity which can be handled by the use of shape 

functions, which are used to transform between the physical and natural coordinate systems, 

/ /   x natural       / .   . .     . ,_     . 
/     u{x) dx , ^  /    u(£)\J\ d£. (B.l) 

Jxi physical   J_i 

B.l     One-Dimensional Shape Functions 

B.l.l     Linear Elements 

The shape functions for the linear isoparametric element are as follows. 

Hl{0 = \{l-0 (B.2a) 

H2(0 = \a + 0 (B.2b) 

A point £ within the natural element is mapped into a point x within the physical element 

using the shape functions given in Eq. B.2. 
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x = Hl{i)xl + H2(£)x2 (B.3a) 

= ^(1-0^1 + ^(1 + 0^ (B.3b) 

The Jacobian is given by 

2 
dx      ^ dHfä 1 

B.2     Two-Dimensional Shape Functions 

B.2.1     Bilinear Elements 

The shape functions for the bilinear isoparametric element are given below. 

Hi(t,v) = \a-0a~v) (B.5a) 

ff2(0r?) = J(l+0(l-r?) (B.5b) 

ff3 (Or?) = ^(1+0(1 + ^?) (B.5c) 

ff4(0r/) = i(l-0(l + r?) (B.5d) 

A point (£,77) within the natural element is mapped into a point (x,y) within the physical 

element using the shape function given in Eq. B.5. 

4 

x = ^2 ^(0 rj)xi (B.6a) 

4 

y = ^2Hi(£,r,)yi (B.6b) 
i=i 

Similarly, any physical variable can be interpolated using the same shape functions. 

<j> = YdHi^,ri)4H (B.7) 
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The Jacobian matrix is given by 

with Jacobian, 

dx     dy 

'=1111. 0" 
drj     drj 

,   ^      dx dv      dv dx ,„   „ 

The components of the Jacobian matrix are as follows: 

Ju-|-E^- (B-"»") 
4 

J^ = dt = L,    ^   y* (B-10b) 
1=1 

4 

Jn = äü=z^—äirxt (R10c) 

4 

J-- = ^ = L—^—y* (B-10d) 9ry      -^       9?7 

Jn = --(1 - rj)x1 + -(1 - r?)x2 + -(1 + V)x3 - -(1 + r?)x4 (B.lla) 

J12 = --r(l - 77)yi + 4(1 - »7)W + 4(1 + V)V3 ~ 4(1 + ??)2/4 (B.llb) 

J21 = - J(l - 0*i + J(l + 0*2 + J(l + 0*3 ~ \0- " 0*4 (B.llc) 

J22 = -\(i- Owi + j(i + Ow + j(i + O2/3 - j(i - Ovi (B.iid) 
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•hl = \[(1- V)(*2 ~ xi) + (1 + rj){x3 - x4)} (B.12a) 

J12 = \[(l - v)(V2 ~ 2/i) + (1 + 77)(2/3 - 2/4)] (B.12b) 

J21  = 1[(1 - £)(x4 - X!) + (1 + e)(x3 " X2)] (B.12C) 

^22 = \[iX~ 0(2/4 - 2/i) + (1 + 0(2/3 - 2/2)] (B.12d) 

This leads to a more precise form of the Jacobian, 

\J\ = A + (xxy4 - xxy3 + x2y3 + x4y2 - x2y4 + x3yx - x4yx - x3y2)£ 

+ (x4y2 - x3yi + xty3 - x1y2 - x2x4 + x3y4 + x2yx - x4y3)r),    (B.13) 

\J\ = \[2A + (12 x 43)£ + (23 x 14)77], (B.14) 
o 

where the area, A, is given by the cross product 

A =-(13x24). (B.15) 
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APPENDIX C 

VISUALIZATION 

Many of the two-dimensional numerical results in the work have been presented in the form 

of Schlierens and interferograms. Such visualization techniques not only accentuate key 

flow feautures such as strong gradients but also allow direct comparison with experimental 

results (see Figure C.l). 

Figure C.l: Generalized visualization setup and geometric reference. Taken from [77]. 

Such techniques are based on gradients of the refractive index of the fluid and for a 

plasma, the electron contribution is significant and must be accounted for. The composite 

refractive index can be found from a linear combination of all species1, 

l = Y,PiKi (C.l) 

For a singly-ionized, monatomic plasma, we have 

1 = p{(l - a)Ka + aKi} + NeK'e (C.2) 

Here n is used to denote the refractive index while N denotes the number density. 
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and specifically for argon, we have K^r+ = ^KAT ([77]), 

n - 1 = pK(l - a/3) - 4.46 x lO~16\2Ne (C.3) 

with the electronic refractive index, 

ne - 1 = -4.46 x l(T16A27Ve (C.4) 

With the refractive index computed from a numerical snapshot, a simulated interferogram 

can easily be calculated from 

A(/>      1   fC2 

~2~ = X /    {n(x>y> z) ~noo} dz. (C.5) 

Alternatively, the refractive index can be used to construct a simulated Schlieren by com- 

puting its gradient throughout the flowfield by 

AI        fC2 \dn ,      , 
—— dz. (C.6) 

l   ndy 
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APPENDIX D 

IMPLICIT CR FORMULATION 

The collisional-radiative source term is integrated independently of the convective terms at 

each time step, assuming the conserved variables to be frozen within the time step. The 

governing equations for the CR kinetics then reduce to a system of ODE's, 

that can be integrated in time using a standard Euler implicit method, 

(£) 
Upon expanding the RHS via a Taylor series expansion 

.    ,     .       =^•+1- (D.2) 
y&tJcR 

(^)CR=ün+w{Qn+1-Qn) (D-3) 

an expression is obtained for that change in conserved quantities1, 

AQ = (I - AiJ)_1AiÖ, (D.4) 

with the Jacobian, 

As was done for the case of heat conduction2, the source term may be expressed as a 

Note that the subscript n has been dropped. 
To facilitate derivation of the stability condition (see Chapter 7) 
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matrix-vector product, 

n = $Q 

such that the Jacobian can also be written as 

(D.6) 

J 
g(gg) 

dQ 

dQ 

$ + *, 

(D.7) 

(D.8) 

(D.9) 

the elements of which take on the following form, 

dujn. dd>n. dtjjn. 

drij dEh 8EC 

duEh duEh dd>Eh 

dnd 9Eh 8EC 

dioEe dioEe dd>Ee 

dnd 9Eh 8EC 

This leads to a natural block matrix decomposition of the Jacobian, 

J(D       J(2) 

J(3)       J(4) 

$(1)      $(2) 

$(3)       <J>(4) 

$(1)      ^(2) 

$(3)      ^(4) 

(D.10) 

(D.11) 

In what follows, the form of matrix $ is given along with the components of the Jacobian 

J. The matrix ^ can be found by subtracting $ from J. It is emphasized here that the 

rates associated with ionization and recombination processes are functions of jc, such that 

St, Ou Wi, Vi, Rt = f(jc). (D.12) 

Also, the electron density is given from consideration of charge neutrality, ne = nAr+(jc=3/2) 

nAr+(jc = l/2)- 
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Sub-matrices of $ 

$(2) 0    0 (D.13) 

$(4) 

(     ne^{(a - l)ken - akei) 

•((a - l)ken - akei) 

2m,- 

2me 

\7lnKen -\- 7leKeij 

nil 
(D.14) 

-9-5xl°-41(df)^     J 
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D.l     Jacobian Elements 

dd>Ar+ 

dn\ 
n\ V1+YJ

nkVk+neS1 - ne^nAr+Wk + {1 - A1)R1 (D.17) 

ß
l>1 = ^(rikKki - riiKik) + )XnkLki 

k<i k>i 

+ niKu - riiKik) - riiVi + nenAr+Wi + neCu + nxKu + (1 - An)An    (D.18) 

^r+(j'c) = neÄjÜc) + rnVj + (1 - Aj)Rj (D.19) 
orij>i 

neFji + mLji + Aji (D.20) 
<9n7>i 

f^ = n^ + niKji + (1 - Ay)Aj (D.21) 
on7>i 

- = ^{nkfki ~ riiUik) -t- 2_J\nk^ki ~ niPik) 
k>i k<i 

2neriAr+Oi + riAr+Ri — niSi + ninAr+Wi + neOi + neRi + n\neWi    (D.22) 

- }{nkFki - riiCik) + }(nkCki - niFik) 
Ar k>i k<i 

-Q^- = n+ X] eMFJk ~ n+ J2 £jkCjk - n+SjSj 
•* k<j k>j 

3PekB(Th - Te)^ + V ((1 - A0J2J)    (D.23) 
m. •        *•—^ 
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dÜEe 

dri-L. 
^efc(3n^_Ofc -nkSk) + ^ ^ eii(n3;Fji - UiC^) 

i   j>i 

3pekB(Th - Te)^^ - 2ne Y R[    (D.24) 
mAr+ 

dtüEc 

dE„ 

2 1 

3 kB 
EE 
2m 

dFji dCij + 

i'u I (Th - Te)^^- - kR 
mAr dTP 

2 1 

3 kB 

2m, 

mAr+ 

y^£j | a, n + 

(Th - Te) 

dO, öS; 

^ f (^i(l - Aj) - nen+) 
ÖÄ 2    1 

<9T„ 3 ri„fc, e ^ '^e^B 
4.75 x 10 

dTe 

~dTe 

-41     ^eff 

dTP 

fövl f 

f-n+    (D.25) 

dujf 

dEh nh   mAr 

rig   2me 

nh mAr+ 
(D.26) 

^2 Yl £i3^n0L3i - niKij) - X] £lJ ("l^lJ ) 
l   J>J J>1 

y^£i(nen+Wi - riiVi) - niViEi 

3 2mP 
nekB(Th-Te) fcen    (D.27) 

Öcjf 

Ön, 
- = nx y Lkieik - n1 ^Kkjekj - n{Vkek - -nekB(Th - Te)^^ken (D.28) 

i<k j>k 

2me 
  
mAr 

2nin+ }   EiWi - -nnkB(Th - Te) -ken - 3nekB(Th - Te) —kei      (D.29) 
ÖTIA mAr mAr+ 
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diüEh _ 2nxn\ ^    dW{ 2me f dken 

r>R„    ~     3t„     l^£i irr.        nnrr,,A[h e)rlT. dEe 3kß    ~/     dTe rriAr \ dT( 

2mP   (, % dk„j 
 -l(Th-Te)-^-kei)      D.30 
mAr+  \ dle 

dÜEh = j^V^V^      ( 

dEh       3kB^^  ij{ 

dL^          dKi:j 

'J dTh      "* dTh ' 

2mr   ,       dWi 
3fcB ^                dTft 

ÖV-. 

- 
nenn 2me 

Ken 
nh   mAr 

n2.   2me 
hi    (D.31) 

"ft     '"-Ar "ft i"'Ar+ 

D.2     Conditioning 

Note that matrices J1-1' and J^4' are nondimensional. This is an ideal situation for optimal 

numerical condition of the Jacobian matrix. Matrices J^2' and J*-3-*, however, have units 

of Joules and Joules-1, respectively, which may lead to an ill-conditioned Jacobian under 

certain conditions. To remedy this, these matrices are normalized by a scaling factor which 

leaves the Jacobian well-conditioned for numerical inversion while simultaneously maintain- 

ing diagonal dominance3. The scaling factor, which can be thought of as an idealized energy 

unit, takes the form 

/maxj(2)\1/2 

SF =  —jm (D-32) 
\ max J ^a> J 

which is used to update J1-2' and J^3' according to 

j(2) _^ j{2)/SF (D.33) 

j(3) _^ j(3) . SF (D.34) 

A necessary condition for Gaussian elimination without partial pivoting. 
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In addition, the energy source terms Eqs. (??) must also be transformed, 

CoEh - CoEh • SF (D.35) 

6JEC -> 6JEC • SF. (D.36) 

Once the changes in the heavy particle and electron energies have been obtained, the units 

are transformed back to Joules via 

AEh -+ AEh/SF (D.37) 

AEe -• AEJSF. (D.38) 
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APPENDIX E 

ADDITIONAL STEADY-STATE RESULTS 

Results of the Mach 16.1, 16.5, and 13.0 ionizing shock test cases as computed under steady- 

state conditions are provided here. 
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Figure E.l:   Ionizing shock structure as detailed by (a) p and ne, and (b) a for case 2: 
Po = 5.15 torr, T0 = 295.9 K, Ma = 16.1. 
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Figure E.2:   Ionizing shock structure as detailed by (a) p and ne, and (b) a for case 3: 
Po = 5.12 torr, T0 = 296.6 K, Ma = 16.5. 
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Figure E.3:   Ionizing shock structure as detailed by (a) p and ne, and (b) a for case 4: 
Po = 5.01 torr, T0 = 296.6 K, Ma = 13.0. 
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Particle Motion Algorithm for Arbitrary Gyro-Frequencies 
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Abstract 

The transport of particles in a Particle-In-Cell (PIC) method is traditionally handled by a 
staggered algorithm, second-order accurate in time, originally developed by Boris [1-2]. The 
scheme is very efficient and although it is stable for time steps large compared to the cyclotron 
period ("gyro-period"), it ceases to be accurate in that case. In cases of strong applied magnetic 
field, this can impose an impractical time-step restriction. An alternative approach is to average 
over the orbital motion and consider only that of the guiding-center; this has led to so-called 
gyrokinetic simulations [3]. However, that approach can also lead to some inaccuracies, due to 
the loss of information regarding the phase of the orbital motion. Furthermore, it may also be 
desirable to have an algorithm that is not staggered in time, in order to guarantee exact 
conservation of total energy at all times. In this paper, we present an algorithm that solves the 
non-relativistic equation of motion exactly, and can yield exact conservation of energy for large 
time steps (compared to gyroperid). The algorithm accuracy is demonstrated and compared with 
the Boris scheme. These preliminary results are valid for the homogenous case only, and 
extension to spatially-varying fields should be considered next. 
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1. Introduction 

We consider the problem of solving the non-relativistic dynamical equation for charged particles 
in arbitrary electric and magnetic fields: 

mv = q (E + vxB) (1) 

This is the basic transport process in Particle-In-Cell (PIC) codes, which is usually solved using 
the Boris algorithm [1], defined in Appendix A. The Boris algorithm is a computationally 
efficient (i.e. uses a minimum number of operations) algorithm, second-order accurate in time. 
Since it is a leap-frog integrator, it is also usually described as a symplectic algorithm, i.e. which 
conserves a discrete analog of the Hamiltonian up to second-order accuracy. This is a critically 
important property for PIC simulations, which usually do not have conservation properties 
embedded in the mathematical formulation as in continuum models, such as finite-volume or 
finite-difference schemes. However, it is important to exercise some caution when speaking of 
energy conservation in the Boris scheme; as a leap-frog algorithm, it uses position and velocity 
staggered in time, the kinetic and potential energies are not computed at the same time. After 
advancing the particle, the kinetic energy can be evaluated from the velocity field at time («+1/2) 

, while the potential energy can be obtained exactly from the particle position at time (n+l) . 
Thus, the kinetic and potential energies are not strictly conserved at the same time. 

Hn) 

At 

;(«+i) 

y("-V2) r« -(«+1/2) 

ß(n) 

4  
At 

 • 

?(»+l) 

B (n+l) 

Figure 1: Schematic of leap-frog Boris algorithm. 

In the leap-frog algorithm, the fields are used at the mid-point for advancing the velocity, i.e. 

fields evaluated at time (n) are needed for updating the velocity from y(""1/2) to t5("+1/2). In an 

electrostatic simulation, the electric field can be obtained from solving Poisson's equation: 
e 

V^ = — (Zlnl-ne) (2a) 

and Ein)=-V0in) (2b) 

In (2a), the particle density at a given location (grid-point) is obtained as the statistical average of 
the contribution of neighboring particle; this "scatter" operation maps the particles onto the grid, 
and various interpolation schemes can be used for this operation. We point out that this mapping 
uses the particle locations at time level («), and therefore the electro-static potential (and electric 
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field) are naturally synchronized with the particle positions. In electro-static simulations the 
magnetic field is constant and there is no concern over its synchronization. In electro-magnetic 
simulations, however, both fields are advanced in time and the procedure must be consistent with 
the Maxwell equations: 

(3a) 

]P (3b) 

(3c) 

(3d) 

Equation (3a), where p    is the charge density from the particles, is simply Poisson's equation 

(2a); in (3b), j is the current density from the particles, and is obtained by a similar mapping of 

the particle velocities onto grid points. The Maxwell equations are naturally synchronized to 
second-order accuracy for r(n),E(n) and y("+1/2)

52?("+1/2). However the leap-frog algorithm for 

particle transport is of the form v("+V2) = f{v("~vl),E(n),B{n)), and one needs to interpolate in 

time one of the fields for the particle push, i.e. B . Note that the leap-frog algorithm of Figure 1 is 

not the unique solution: one could just as well decide to choose the fields r(n),B(n) and 

-(«+ 2)^(B+ 2) or omer comDinations and rely on the time-interpolation of another field (matter 

or particle) to re-establish second-order time accuracy. Higher-order schemes can of course be 
obtained with iterative methods. 

s0V-E = -PP 

dE 
0 dt 

vxi 
Mo 

— = -VxE 
dt 
VB = 0 

rc«Ax rc<Ax 

Figure 2: Potential positional error of drift dynamics versus gyro-radius 

The Boris algorithm is stable at high values of the magnetic field, i.e. when a>cAt » 1, although 
accuracy is lost for large time steps. Practically speaking, the time step in PIC simulations using 
this algorithm is restricted such that cac At«1; this makes the scheme highly inefficient in cases 
of strongly magnetized plasmas. One could consider an alternative approach in that case, where 
only the motion of the guiding center is modeled; the rotation around the field line is not tracked, 
but averaged over several orbits. This "drift dynamics" approach is valid when the gyro-radius 
rc « Ax, the characteristic cell-size; however, significant errors can be introduced even when 

rc < Ax. Since the phase of the gyro-motion is not known in this approximation, the particle 
position is effectively randomized on a scale comparable to the cell size (see Figure 2). This can 
lead to errors at the crossing into different cells or boundaries, and errors when the field gradients 
on the scale of a cell size are non-negligible. Therefore, it is worth investigating the construction 
of an accurate particle-push algorithm that is more efficient at high cyclotron frequency, yet 
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remains accurate and conserves energy to a high level of accuracy. This is the object of the 
following study. 

2. Exact Solution 

We consider here the case of constant and uniform fields. This considerably simplifies the 
analysis and allows us to obtain an exact analytical solution to the non-relativistic equations of 
motion. The constant field approximation is valid when the time-variation of the fields is 
neglected during the time-step (i.e. first-order time-accuracy of the field evolution); the extension 
to higher-order time-dependency and non-uniform fields will be examined in the future. We will 
also be performing a transformation to the reference frame aligned with the magnetic field. Let us 
first define the laboratory frame (L) by the italicized letters (x,y,z) and a rotated coordinate 

frame by (£, fj, g) such that the unit vector t,  is aligned with the magnetic field, i.e. £ = b. 

Figure 3: Reference frame transformation: £ aligned with B. 

The rotation operators between the two reference frames are given by: 

R 

R1 

£ ty 4] 
/ 

n, >h Vz = 

£,- Zy s.) V 

c
9
ce s<pce 

\Cq>S9 s<pse 

Vy 

Vz       £ 

Zy s<pce 

0 

Ccf>S8 

SipS0 

-0    J 

(4a) 

(4b) 

where we have used the condensed notation of c = cos(^>), sg = sin(^), etc. Once the rotation 

into the aligned frame is performed and no confusion is possible, we can use the script letters ( 

x, y,z) to denote the components in that frame, i.e.  (x, y, z) = (£, f\, £) . We will also denote 

vectors in that frame by bold-face type, i.e.: E = R ® E. 

In this rotated frame, the equation of motion (1) can be expressed by: 
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vx 
=-£. 

Ill 
Ex 

+ qB_ 

m 
V 

_q_ Ey 
qB 

vv   V > in ^ in 

v7 
=1. E, 

(5) 

in 

In this frame, the magnetic field has a component only in the z direction, and therefore Bz = B, 

the magnitude of the magnetic field. We can define a normalized electric acceleration field 
a = #E / m and the cyclotron frequency co = qB I' m , which is a signed quantity. The solution for 

the z -component of the velocity is trivial and can be ignored for the moment. The system (5) can 
be reduced, for the transverse components, to: 

0    co v = a 
co   0 (6) 

where the underline indicates a vector in the transverse directions only. An additional time 
derivative of (6) yields the following: 

—;-i I S>- (7) 

The general solution of (6-7) is: 

fv0 sin(cot+(p) + (ax/co)sm(cot+<p) + (ay/co)(l-cos(cot+<p)) 

-    1 v0 cos(cot+<p) - (a x Ay)(l-cos(<yM-#>)) + (a Ay) sm(cot+<p) 
(8) 

Let us denote <j>(i) = cot + cp. It is to verify that the solution (8) satisfies the equations of motion: 

.     J<w0 cos(^) + ax cos(^) + aysin(0)    J<yvy + ax 

-    1-<yvosin(0)-axsin(^) + ay cos(^)    )-covx+ay    - 

\-co2v0 sin(^)-ax<ysin(^)+ay<ycos(^)    \-co2vx+ coay 

I-<y2v0cos(^)-ax<ycos(^)-a <ysin(^)     \-co2v -coax 

0    co 
-co  0 

-<y v- 

0(9a) 

1 o V 0 <9b> 
Let us now compute the solution at an advanced time t + dt. From (8) we have: 

[v0 sm(<fH-d(f>) + (a Jco) sin(0+d0) + (a v/co)(l-cos((fH-d0)) 
r        1 v0cos(^+J^)-(ax/<y)(l-cos(^+ö?^))+(av/(y)sin(^+ö?^) 

Expanding the trigonometric functions we find: 

v(t+dt) •- 
yx-ay/co 

vx-ay/co 

yy+ax/co 

\y+aJco t'!Z-^-< l-c, 

cs-\ 

where S = codt and Q(dt) is the counter-rotation matrix around the magnetic field: 

cos(J)    sin(c>)^ 
-sin(J)  cos(S)J 

The last matrix in (11) can also be written in terms of this rotation matrix. Let us define: 

£l(dt) • 

-co 0   1 
-1 0 

and  o -co 
0 -1 
1 0 

then (11) becomes: 

In a compact form: 

y(t+M) = £l(dt) • v(0 
'<?     <"8 

•o   -a 

(10) 

(11) 

(12) 

(13) 

(14) 
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Ay = v(t+At)-v(t) = \a(dt) -1] • [v(0+o_1 -a] (15) 

One should now consider the case of vanishing magnetic field. The matrix a     on the RHS of 

(15) is singular when B = 0. However, it can be combined with the term in brackets as follows: 

|ß(*)-l]-5_1 

sin S     1-cos S 

S 
cos S -1 sin£ 

V 

dt (16) 

The matrix At is regular, since: 

—i ~~*  n   1        wrien  #> —> 0 

One can expand (15) to the next order in S = coAt, leading to: 

axdt+codt(v +\a dt) -\{codi)2w 
Av- y ' 2 "y""v       2 

a dt-co dt(v x+\a xdt) - \(co dt)2 v 

(17) 

(18) 

We see that the second-order accurate (o(dt2)) solution is obtained by rotating a half-step 

advanced solution, as expected. We can also verify that this solution is identical to the Boris 
algorithm, by comparing (18) with (A.23b) of Appendix A. 

The opposite limit of large time steps compared to the gyro-motion, i.e.  codt —>co, is also of 

principal interest. In that case, the trigonometric functions oscillate rapidly, but the trajectory 
remains bound. One can perform an averaging over a large number of gyro-motions, and 
eliminate all terms proportional to these functions (< cos >=< sin >= 0 ). The remainder is: 

which is independent of the time step At. This is a constant velocity, which can be easily 

recognized as the ExB drift velocity, since (19) is equivalent to: 

EyIB       ExB 

-EJB    -~B^~ 

Therefore, the formulation (15) automatically recovers the drift motion of the guiding center 
when the gyro-motion is not resolved - with a randomized rotation around the magnetic field. 

<v>= (20) 

(21) 

Let us now look at the exact solution for the particle position. From (8), we obtain: 

X(0 = I<L(-?°S/| + J_ (•+ ^int\a + - 
ü)\sm^J    a2 \ sin^   -cos^ -    co 

The expression at a later time t + dt can be expressed as function of the original phase (f>(t) and 

the phase difference d(p = S = a>dt by: 

f V' 

Mt+dt) •- 
1 

O) 

ay(t+dt) 

-ax (t+dt) 
-(v0/fl>)c, -(ax/ft,2)c^ -(av/^

2)^ 
My0/(o)s4 +(ax/co2)s, -{avlco2)c. 

(22) 

One recognizes again the rotation matrix (12) in that expression, which allows us to write the 
displacement as: 

AX: 
1_ 

CO 

aydt 

-adt 
•\Q(dt)-i\- 

-(v0/fl>)c, -{aJ(o2)c^ -{aylco2)s4 

MyJ(Q)s4 +(aJco2)stj> -{aylco2)c^ 
(23) 

However, from (15) one can also recognize the following expression: 
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Ay = (h(A)-l)- 
\x-aylco 

vy+ax/co = ("-!)• 

v0^ +(ax/fi>)s, -(&y/(o)ct 

VoQ +(ax/o)c# +(a /o>a 

Inserting (24) into (23), we finally obtain: 

Ax: 
1_ a^A? -Avv 

-a,.A?+Avv 

For the displacement along the magnetic field, the exact solution is of course: 

Ax,, =vJt)At + jallAt2 = \M+\At)At 

(24) 

(25) 

(26) 

It would appear that the transverse displacement (25) has a singular behavior at vanishing 

magnetic field strength, due to the co~x factor. However, a simple Taylor expansion can confirm 
that this is not the case: when co —» 0 one can use (18) into (25) to verify that, as expected: 

AX: KA'2 vM- 
vyAt + \ayAt2 

o(co2) (27) 

The expression (25) is therefore valid for all non-zero values of the magnetic field. We can, as 
before, regularize this expression in the case of co = 0; after some simple algebra, we obtain: 

Ax: S 

s 

f 

•vAt + 

V 

s1 
S2 

S1 

•a At1 (28) 

We have recognized the first matrix (16), and defined a second regularized matrix A2. Both are 

finite when co —» 0, since in that case (defining also the following S, C coefficients): 

^-o-^   cs    ^1 

S 

1-c, 

1- 
6 

2 
C, 

1-c, 

£ 
6 

1_ 

2 ^2 "z      ^2 

Therefore, the procedure outlined above is applicable in all cases of magnetic field values. 

(29a) 

(29b) 

3. General Algorithm 

One can construct two types of algorithms. The first case is valid only for S > s, i.e. does not 
require regularization, and is governed by the following operations: 

(1) Transform the velocity, position and acceleration vectors from the original reference 
frame into the rotated frame with the z axis aligned with the magnetic field. 

(2) Compute the changes to the transformed velocity vector, separating the transverse and 
parallel components: 

v -a,,/<z> 
Ay = (fi(A)-l)- 

Avi, =a„At 

Yy+ax/co 
(30a) 

(30b) 

(3) Compute the changes to the transformed position, separating the transverse and parallel 
components: 

Ax.-L 
CO 

ayAt-Awy 

-a^At+Av, 
(31a) 
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Ax,, =vll(t)At + ±allAt2 

(4) Transform the changes back into the original frame and add to the initial values. 

(31b) 

In the second case, the regularized matrices are used so that the algorithm remains valid for all 
cases of field values, including S < s . Combining transverse and parallel components , we can 
express the velocity change as: 

Av: 
~Co    S0 

-S0   -C0 

0       0 

0^ 
0 
0 

(St Cx   0^ axAt 

-Ci Sx   0 avAt 

I o 0    1, azAt 
(32a) 

AX: 

fs, Q   0^ \xAt f 

-c. Sl   0 YvAt + 

V 0 0    1, _YzAt_ V 

U9 *J 2 

S2    C2 

0     0 

0^ 
0 

axAt< 
a, A/2 

a A?2 

(32b) 

The transformation steps (1) and (4) remain the same. 

It would appear that the proposed scheme is very expensive, since it requires the evaluation of 
several matrices. However, in the case of constant fields studied so far, these matrices can be 
determined once the fields and time step are known. The transformation matrices (4) can be 
incorporated into the definition of the regularized push matrices A0,A1, A2, leading to: 

Dk =R_1   Ak   R,  it = 1,2,3 (33) 
The changes can then be computed directly in the initial (non-rotated) frame: 

qAt 

in 
,2 

Av- :D0-l5 

and Ar =Dl-vAt 

Dl E 

qAt 

(34a) 

in 
D2 -E (34b) 

4. Computational Tests 

The first test conducted concerns the movement of a single particle (a positron) in static fields; 
the initial velocity is null, the electric field is 1 kV/m in the positive y -direction and the magnetic 

field is 1 Tesla in the positive z -direction. Under such initial conditions the particle executes a 
cycloidic movement of height equal to h = 2rL = 2vD / coc, where vD =E IB is the drift velocity 

in the x -direction. The motion is computed for three cases of constant time steps, being 
respectively 0.1 / coc, 1/ coc and 10 / coc. Since the Boris algorithm requires the velocity at a prior 

half-time step, that initial value (v(~vl)) is computed from the exact solution. The trajectories for 
the exact solution, the Boris algorithm, and the regularized algorithm of eqs. (34) are shown in 
Figure 4. All methods are in very good agreement for small time step. For At = 1/ coc, the Boris 
algorithm starts to show some noticeable deviations from the exact solution; first, the Larmor 
radius, or height of the cycloid, is noticeably larger; second, the effective gyro-frequency is 
somewhat lower, leading to a growing de-phasing with the exact solution. At larger time steps 
(Figure 4c), the solution from the Boris algorithm is in error by close to an order of magnitude \ 
By contrast, the current algorithm provides a solution that is in perfect agreement with the exact 
solution, both in amplitude and phase. 

The underline is eliminated, since these are now 3-dimensional variables. 
1 Note that the magnitude of this error is bounded, i.e. does not grow in time, a result of symplecticity. 
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_L 
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_L 
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250x10" 
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>- 
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40- 

-9 

*  

""I 

Exact 
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-••- This method 
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~~I  
200 

X [m] 
250x10" 

Figure 4: Particle trajectory for three time steps; exact solution is compared to the results 
from the Boris algorithm and the current scheme. 
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It should also be pointed out that, despite the obvious error in transverse position and rotation 
frequency present in the Boris algorithm, the drifting motion in the x -direction is accurately 
maintained. This is evident in Figure 5, where the difference between the actual position and the 
expected position from the constant drift is plotted versus time. The natural oscillations are due to 
the cycloid motion itself and of amplitude equal to the Larmor radius; only at the largest time step 
does the Boris algorithm deviates from the expected behavior. The current method (Figure 5b) 
yields the correct drift dynamics at all time steps. 

60x10"' _L 

Boris 

1.0 
I 

1.2 
I 

1.4 
I 

1.6 
I 

1.8 
I 

2.0 
I 

2.2 

time [s] 

I 
2.4x10 

60x10"' 

>°   40- 

20- 

-20- 

This method 

o.o 0.5 

 At = 0.1/G>C 

 At = 1 / coc 

•o-At = 10/a>„ 

1.0 
"T- 

1.5 
T- 

2.0 2.5x10"' 
time [s] 

Figure 5: X-position versus time, normalized to theoretical position of guiding center (VDt). 

One can now examine the impact of the errors on conservation properties, i.e. kinetic, potential 
and total energies. In this simple test case with an imposed external field, the potential energy per 
mass is simply  epot = (qElm) • y, where   y   is the particle position along the  y -axis. It is 

important to point out that for the Boris algorithm, the kinetic and potential energies are evaluated 
at different times, i.e.: 

in) 
'pot (qElm)yn)    and     e, (re-1/2) 

kin 
:(v(«-V2))2/; (35) 

Therefore to evaluate the total energy at a specific time (e.g. t(n)), one must interpolate one of the 
variables to that time level. Both kinetic and potential energies are shown as function of time for 
the Boris algorithm in Figure 6. 
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O) 

£ 
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o i                i                i 

G)      2- 
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2      0- 
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0.5 1.0 1.5 2.0 2.5 3.0x10"9 

X [m] 
Figure 6: Kinetic and potential energy versus distance for Boris algorithm - all cases of time 
steps. Dashed horizontal lines indicate theoretical limits of variation. 

It can be seen that there is a rapid degradation of the energy conservation as the time step is 
increased to values of the same order or beyond the gyro-period; the error in amplitude of the 
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particle trajectory leads to errors in potential energy which become severe for large time steps. 
Since the current method is in perfect agreement with the exact solution at all time steps, the 
energy is perfectly conserved in that case (see Figure 7). 

-2-- 

-3x10 

_L _L _L _L _L 

This method ( all At)    Ekin (0.1/a>c)   o   Ekin (1/a>c)   --•• Ekin (10/a>c) 

0.8 

Epot (0.1/ag    *     EDOt(1/cDc)     A    Epot(10/coc) •pot 

T T 
0.9 1.0 1.1 1.2 1.4x10"" 

 1  
1.3 

X [m] 

Figure 7: Kinetic and potential energy versus distance for current method - all time steps shown. 

To evaluate the total energy, one must 
account for the dephasing of the 
velocity and position in the case of the 
Boris algorithm, as mentioned 
previously. This dephasing can be 
clearly seen when plotting both 
energies versus a single time coordinate 

(t(n)) in Figure 8. The shift of the two 
curves is a result of the leap-frog 
algorithm. One can correct for this by 
plotting the kinetic energy versus the 
proper time of evaluation, i.e. the set 

{t(n+vl)}, as done in Figure 7; this 

shifts all the points to the left, as 
indicated by the black arrows of Figure 
8. The total energy can be evaluated at 

the set of times {t(n)} by adding the 

potential energy at that time with the 

average of the kinetic energies at times (7(""1/2) 

2.1x10 

126      128 

time [ps] 

Figure 8: Kinetic (red) and potential (blue) energies 
versus a single time coordinate. 

,?("+1/2)). This interpolation is accurate as long as 

the time step is sufficiently small, i.e. such a linear approximation of the trajectory between the 
two times is reasonable; however, it can lead to severe errors for large time steps. This phase 
error of the Boris scheme is in addition to the amplitude error (effective Larmor radius) already 
observed, for example, in Figure 6. The average errors on total energy and position can be 
obtained for various values of the time step and magnetic field. The error on the total energy can 
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be defined here as err(Etot) = (Etot-Ein)/E0, where Ein is the initial total energy (at t = 0) and 

E0 is a representative energy scale; here, E0 =v2
D/2, where v0 is the drift velocity. Similarly 

for the position, the error is defined as err(X) = l\xa -x^act / X0 ; all components of the position 

are contributing, and X0 is a representative length scale - in the case of cold particles here, the 

Larmor radius, i.e. half the height of the cycloid motion. Both errors are shown in Figure 9 for the 
two schemes. 

100 

0.0001 

©„At 

Figure 9: Error on energy (a) and position (b) as function of time step for several values of the 
magnetic field, for the Boris and our algorithms. 
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Note the change of scale between the left (Boris algorithm) and right axis (current algorithm); 
clearly, the present scheme is more accurate by several orders of magnitude. 

5. Conclusions 

We have successfully implemented and tested a new particle pusher algorithm that can effectively 
be used for large time steps, much larger than the gyroperiod; the method is based on the exact 
solution of the equations of motion, but does not require tracking the phase of the particle motion 
around the field line. The method can be applied to arbitrarily large time steps and yields exact 
(down to machine accuracy) conservation of energy and exact position. The method is currently 
restricted to the non-relativistic case, and to uniform fields. Extension to the relativistic regime 
would be very difficult, since there is no longer an analytical solution; extension to the non- 
uniform (magnetic) field does not present a-priori any difficulties, but this must be verified. 

It would a-priori appear that the algorithm is computationally expensive, but this is not 
necessarily the case. The push matrices (eqs. 32) need to be computed only once for each time- 
step, but are the same for each particle in this case of uniform field. Thus, the method would be 
efficient when computing a large number of particles in such configurations, e.g. Penning traps. 
In the case of weakly non-uniform fields, one can also attempt a perturbation expansion, such that 
the computationally expensive push matrices (involving trigonometric function evaluations) are 
again computed once in each computational cell, while each particle is transported according to a 
hybrid scheme involving the one described here, and a rapid scheme such as the Boris algorithm 

for the small perturbation SB or a similar procedure that does not involve time staggering. This 
can be investigated in the future. 
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Appendix A: Boris Algorithm 

The Boris algorithm is defined by the following steps, from the velocity at t-At/2 and the 
fields at t : 

1. y~ = y (t-At/2)+ -^—E(t) 
m 2 

2. v-=v-+i-v"xB(0 
m 2 

3.    v+=v" 

q At 

m 2 

'«»^ 

v x B(0 

V m 2 J 

4. y{t+Atl2) = \+ +?-—E(0 
m 2 

The position is advanced by the additional step: 
5. r (t+At) = r(t) + At \(t+At!2) 

(A.I) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 

The algorithm could also be written a different way. Let us define the following vector: 
co At » 

ß = ^—b (A.6) 

where coc = — B    is the cyclotron frequency (unsigned) and   b = B / B  is the unit vector along 
m 

the magnetic field. Steps 2 and 3 can be combined into the form: 

v+ = v ßxv 
l+ß2 l+ß2 

(with ß = |ß|). The equivalent matrix form is: 

ßxßxv" (A.7) 

l+ß2 

or equivalently: 

+    1-A2    - v   = -v 

0 +ßz -ßy) 

-Ä 0 +ßx 

•ßy ~ßx 
0  J 

• v 
l+ß2 

l+ß' l+ß2 

0 +ßz ~ßy) 
-A 0 +ßx 

ßy ~ßx 
0  J 

(-ßl-ßl   ßxßy    ßxßz 

ßyßx   -ßl-ßl   ßyßz 

ßZßX ßjy -ßl-ßl 

rßJx       ßjy       ßjj" 
ßyßx       ßyßy       ßyßz 

KßJx       ßzßy       ßzßz 
l+ß2 

(A.8) 

(A.9) 

The origin of the Boris algorithm is made clear by the following. Consider the rotation step as 
follows: 

q At 

leading to: 

or in matrix form: 

£v = v+-v" =-2.—(v"+£v)xB(0 
m 2 

+     q At n      +      _     q At ^ 
v   +- Bxv =v Bxv 

m 2 m 2 

(A. 10) 

(A. 11) 
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1 "A +ßy) 
f 

-A 1 "A •y+ = 

"A +A 1 J V 

1 +A -^1 
"A 1 +A 
ßy "Ä 

1   J 
(A.12) 

N+ N_ 

The matrix N+ on the LHS can be inverted to yield: 

' \   +   ßl +ßz+ßjy -ßy+ßj, 

~ßz+ßyßx l    +   ß'y +ß^ßyß 

^ßy+ßjx ~ßx+ßZßy l  +   ß 

NT1 1 

l+ß2 y/~z 
2 

(A.13) 

The product N+' -N_ is: 

NT1 -N_ 
l+ß2 

l+ß2-ß2-ß2 +2ßz+2ßxßy -2ßy+2ßxßz 

-2ßz+2ßyßx l+ßl-ßl-ßl +2ßx+2ßyßz 

+2ß+2ßzßx    -2ßx+2ßzßv    l+ßl-ßl-ßl 

(A.14) 

which can be decomposed into the form: 

'     " >"A       ~ßy 

o     +A NT1 -N_ 1"A 
l+ß' (I)" 1+A 

0 

o 1+A 

'AA   A A   AAA 

AA   AA   AA 
A A   ßzßy   ßzßZJ 

(A 15) 

We see that this is equivalent to (A.9), and therefore the steps 2 and 3 of the Boris algorithm are 
equivalent to a time-centered scheme for the gyro-motion (A. 10). 

Note that the Boris algorithm is operator-splitting the electric acceleration from the magnetic 
rotation. We could also look into a complete operator definition without this splitting, by 
considering the full time-centered algorithm: 

^V = V«+l/2"V«-V2 
q.At.E„ +i-(v„+K+vrf)xB„ (A. 16) 
m m 2 

which becomes 
N+-vII+1/2=allA/ + N_-vJl_]/2 (A. 17) 

where a„ = (q/m) • En. The solution is already expressed using the matrices of (A.13) and (A.15). 
To simplify the notation, let us define the following: 

Mo=—M1)'  M1=—!- 
l+ß2 l+ß2 

then the solution is expressed as: 

0 +A -A) 
-A o   +A 
-A -A   o J 

and M- 
1 

i+A 

fßxßx ßxßy AAA 

ßyßx ßvßv ßyßz 

ßzßx ßzßv ßzßz 

H+l/2 

with: 

and 

N: 

1.2 

:M0+M, 

N^N_ =(l-ß2)M0 +2M, +2M, 

(A.18) 

(A.19) 

(A.20a) 

(A.20b) 

In the case where the magnetic field is aligned along the z-axis, considerable simplification 
occurs. We can easily see that (A.9) leads to the following relations for the parallel and transverse 
components respectively: 

y»=y« (A.21a) 
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and                                  v^ -, 1 -S2I2      S    A 

v  -S    -S2
I2J 

_ 
V± ~ l+(J/2)2 ' v± 

where S = coc At. This leads to: 
Av = V«+l/2-V„-l/2 

= (.v++{a„A0-(-v-4a„A0 

f-82l2     5     0N 

T       \t    \ -5    -S2I2 0 
0         0      0 

v                        ) 

•(vn+|anA0 A  LSI-r 
l+(J/2)2 

or, keeping terms of order S2 only: 

axA? + ((ycA0(vv+}avA0-iKA02vx 

Av = < zyAt-{cocAt){vx+\?LxAt)-\(wcAt)2vy 

azA? 

(A.22b) 

(A.23a) 

(A.23b) 
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1       Introduction 

Thermal neutrons with energies on the order of 0.025eV are of considerable interest to 
the Department of Defense and for commercial applications. Unlike high-energy photons, 
neutrons easily penetrate high density targets, but get effectively absorbed by low density 
materials like paraffin, nylon or explosives. This makes them attractive complements to 
X-rays for radiographic applications, e.g. for the detection or inspection of explosives 
inside steel casings. The key challenge is to develop a compact generator for thermal 
neutrons with a flux of at least 10 neutrons/cm s which is sufficient for radiographic 
applications. 

The limited available amount of radio-isotopes like Californium 252, combined with the 
relatively short half-life, safety constraints and regulatory requirements make them 
unattractive for wide-spread use. 

An alternative design exploits the Deuterium-Tritium (D-T) fusion, which generates 
Alpha particles and fast neutrons. In these sources, Deuterium ions are accelerated to 
about 130 keV and hit a Tritium target. In order to be attractive for radiographic 
applications, the 14.1 MeV neutrons have to be thermalized in an external moderator, for 
example a paraffin layer. This reduces the useful neutron flux by about two orders of 
magnitude. D-D reactions produce neutrons with lower energy (2.4 MeV), but one must 
also account for the branching ratio into charged products; i.e., d(d,p)t, and the reduced 
cross-section compared to d(d,n)a. 

The acceleration of Deuterium ions is usually accomplished in a diode configuration. 
Recently, the interaction of high-power laser pulses with plasmas or solids has attracted 
considerable interest for the acceleration of electrons or ions [1, 2]. Especially the 
acceleration of ions to MeV energies opens entirely new possibilities for small scale ion 
accelerators and possibly for neutron sources. 

In this project, we therefore investigated different target configurations for the potential 
use as neutron generators via numerical simulations. 

2       The Plasma Simulation Framework VORPAL 

The versatile plasma simulation code VORPAL [3] was originally designed for the 
investigation of laser wakefield acceleration of electrons. However, the code design is 
sufficiently general that it is capable to address entirely new application areas, like 
modeling of superconducting RF cavities, breakdown phenomena in microwaves guides 
or investigations of astrophysical plasmas. Figure 1 shows examples of such simulations. 
The code has recently been enhanced by a variety of models, including ionization 
processes. 

The model for ionization processes is a hybrid between classical particle-in-cell [4] and 
the Direct-Simulation Monte-Carlo model [5]. Particles are pushed in their self-consistent 

1 
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electromagnetic field. At every time-step, particles within a cell are considered for 
possible collision (and therefore reaction) by Monte-Carlo methods. The main parameters 
required in this model are energy dependent cross sections for ionization. While the 
model was mainly designed for ionization processes, it can relatively easily be adapted to 
other reaction types, including fusion. 

Figure 1: Left panel: Example of a VORPAL simulation, (superconducting RF cavity). Right Panel: Mono- 
energetic electron beam generated by laser-wakefield acceleration (Simulation by John R. Cary, 
Visualization: Peter Messmer). 

2.1     Ionization Model 
The ionization model in VORPAL was successfully used to reproduce ion spectra in 
Electron-Cyclotron Resonance Sources. Figure 2 shows a comparison of the kinetic 
impact ionization model in VORPAL with a spectrum for a hot population of oxygen 
measured at VENUS [7]. For experimental reasons, the spectrum was not measured for 
pure oxygen, but rather a mixture of Oxygen and Helium. The resulting spectrum at 
mass/charge ratios of 4 was therefore a blend between the oxygen and the helium 
contribution. The VORPAL simulation is a fully periodic box, containing atomic 
Oxygen, 0+ and e". The evolution of the different charge states is shown in Figure 2 
(right). For the given electron energy, the first charge state not present in the initial 
distribution is going to be 02+, but as soon as it is available in high enough concentration, 
the next ionization state is being produced and the ionization rate of O drops. The 
overall spectrum obtained by integrating the ionization rates in time is shown in the left 
panel. For comparison, the measured current at VENUS [8] is shown. Good agreement is 
obtained for 5 charge states. As mentioned previously, the charge state M/Q=4 is mixed 
in the measured spectrum. We therefore plotted a token value of 0 at M/Q=4. The good 
agreement of the simulated with the measured spectrum indicates that the kinetic 
ionization model in VORPAL works as expected. 

The energy dependent cross-sections for the ionization model in VORPAL are based on 
the semi-empirical model by Shull and Van Steenberg [9], which originates from the 
astrophysics community. This models predicts the energy dependent cross-sections of 
light elements, including, C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni. 

2 
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Figure 2: Left: Comparison of an oxygen spectrum computed with the kinetic ionization model in 
VORPAL [bars] with an observed spectrum [red stars]. The measurement at Oxygen 4+ was blended with 
Helium and therefore not shown in the picture. Right: Temporal evolution of the different charge states of 
Oxygen for a population starting with pure Oxygen, and 0+: 02+ (black), 03+ (brown), 04+ (organge), 05+ 

(yellow), 06+(purple), 07+(blue). 

2.2     Fusion Reaction 

The first part of this project was to implement a cross-section model for fusion reactions 
into VORPAL. Due to the relatively large cross-section at low energies, we chose the 
Deuterium-Tritium (D-T) reaction for all further studies. We chose a parameterized 
cross-section model [6] of the form 

aT(E) 
A5 + (A4-A3E)2+\\lA2 

exp(4^-1/2)-lJ 
(1) 

with A! = 45.95 barn keV, A2 = 50200 barn keV, A3 = 3.98e-3 keV , A4=1.297 and 
94 9 

A5=409 barn keV, and the total cross section aj measured in barn (10"    cm ) and the 
energy E in keV. 

Figure 3 shows the cross-sections as a function of energy. The peak cross-section is on 
-27 the order of 10"   m , centered around an energy of 130 keV. 

One of the main differences between the kinetic ionization model and the fusion model is 
the magnitude of the cross-section, which is about 7 orders of magnitude smaller for 
fusion than for ionization. We therefore did not track the generated He (a particles) in 
the simulation, but rather estimated the number of neutrons generated in the interaction 
based on the particle statistics. This de-coupled approximation is valid because the a- 
particles are too few to have an impact on the plasma dynamics (i.e. energy deposition), 
despite the short mean free path at such high densities. 

3 
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2.3     Fusion of Shock-Accelerated Ions 
It has previously been reported that the interaction of a femto-second laser pulse with 
over-dense plasmas can lead to the formation of a shock wave in the target and to the 
acceleration of ions at this shock front [10]. In a target consisting of a D-T mix, this will 
therefore lead to a population of D-T ions streaming through a D-T background. If the 
energy of the shock- accelerated ions is large enough compared to the background ions, 
one expects that fusion reactions and therefore neutron generation will occur in the 
vicinity of the shock front 

In order to test this hypothesis, we modeled the interaction of a femto-second laser pulse 
with a slightly over-dense D-T target. We assumed a plasma of density 2.810 m" being 
irradiated by a 60 fs, 0.8 fim laser pulse with an intensity of 1=1.81017 W/cm2 and a spot 
radius of 3 urn. The plasma was over-dense with a ratio of n/ncr =1.6. The plasma was 
modeled in a 2D configuration on a 3000 x 5 cell grid. The grid resolution in longitudinal 
direction is 1.6 nm and 10 nm in transverse direction. Perfectly matched layer (PML) 
boundary conditions were employed along both directions of propagation and periodicity 
was assumed in the transverse direction. 

T Crossectiors 

400 600 
Energy [keV] 

Figure 3: Energy dependent cross-section for the D-T fusion reaction based on the model in [6]. The peak 
cross-section is around 100 keV and reaches 10~27 m2 (10 barn). 

Figure 4 shows phase space projections of the interaction at different times. Due to the 
lighter mass, the Deuterium ions get accelerated to higher velocities than the Tritium 
ions. The Target Normal Sheath Acceleration (TNSA) mechanism accelerates both D and 
T ions at the backside of the plasma (at x=2.5 urn). However, in addition to the TNSA, 
particles are accelerated in the interior of the plasma at the shock front. This results in a 
fast population of D (and T) propagating forward through the background plasma. 
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Figure 4: Phase space projections of the D (blue) and T (red) ions at different times: (a)- 96fs, (b)-0.48ps 
and (c)- 0.96ps. 
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Figure 5 shows the energy distribution of the ions for the above parameters. While these 
simulations demonstrate that a fast population of D can be generated by the laser-plasma 
interaction, the resulting ion energies are only on the order of 50 keV, for which the 
cross-section (see Figure 3) is too small to generate any significant number of fusion 
events. 
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Figure 5: Spatial energy distribution of the D (blue) and T (red) population after 0.48ps (left) and 0.96ps 
(right) for a laser intensity of 1=1.8 1017 W/cm2. 

Figure 6 shows the ion phase space and energy of an interaction with increased laser 
intensity of I = 2.6' 1017 W/cm . All other parameters are identical to the previous 
simulations. The energies of the shock-accelerated ions are well above the 120 keV 
required for a significant number of fusion events to occur. 

5x10 

6x10B 

^-     4x10B 

(A 

-2x10= 

-4x10"' 

0.5 

500 
/ 

400 

ä 300 ;   y / 
> 
E  200 

CM 

100 

0 

; \üi     J ; 
3 0 0.5 1.0 1.5 2-0 2.5 3.0 

Figure 6: Phase space projection (left) and ion energy (right) for the interaction of a 60 fs, 2.6 10 W/cm2 
laser pulse with a D-T plasma. 

Using the newly developed fusion model in VORPAL, we were able to investigate the 
neutrons generated in this interaction. Figure 7 shows the temporal evolution of these 
neutrons. The peak neutron flux occurs when the shock-accelerated ions propagate 
through the unperturbed plasma. Once they reach the former back side of the plasma, 
which is now accelerated via TNSA, the relative velocity is reduced and the number of 
fusion events is therefore reduced. 
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Figure 7: Left: Temporal evolution of the neutron flux generated in the interaction of a 60 fs laser pulse 
with a D-T target. Right: Scaling of the peak neutron flux with increasing laser intensity. 

The energy of the shock-accelerated ions is highly dependent on the shock velocity, 
which is in turn dependent on the laser intensity. As these ions are responsible for the 
neutron generation, the laser intensity will control the neutron flux. Figure 7 shows the 
scaling of the peak neutron flux as a function of laser intensity. At intensities > 31017 

W/cm , the target was destroyed. 

In summary, using the newly developed fusion model in VORPAL, we demonstrated that 
the interaction of high-intensity laser pulse with an over-dense D-T target can lead to the 
generation of neutrons. 
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Figure 8: Reverse acceleration of ions in a two material configuration. Laser pulse entered from the left 
and accelerated the first population. At the interface of the two materials, plasma gets accelerated in 
backward direction. 

7 

G-15 



Tech-X Corporation Laser-Fusion Final Report 

2.4     Reverse Acceleration of Ions 

While we demonstrated in the previous paragraph that the neutron flux generated by the 
interaction of a femto-second laser pulse with a D-T mix is sufficient for radiographic 
applications, one of the drawbacks of that configuration is the significant fraction of the 
D-T mix accelerated in the reverse direction (i.e. opposite to the initial laser propagation 
direction) which is lost to neutron generation. These back-propagating particles can be 
seen in the phase-space plots of Figure 4b-c, for x < 1.5 p.m. A more efficient target 
design would take advantage ofthat ablated material as well. 

One way of taking advantage of the ablated material is to optimize the target such that 
ions are only accelerated in the reverse direction. This can be accomplished by a target 
consisting of an under-dense coating applied to an over-dense material. 

Figure 8 shows the ion phase space of such a two-component target, demonstrating the 
ion acceleration mainly in the reverse direction. This is an interesting and potentially 
important mechanism for this type of target, which was not previously investigated. 

This mechanism is not limited to pseudo ID simulations, but also works in 2D. Figure 9 
shows the propagation of a 10 W/m , 60 fs, 0.8 fim laser pulse in a Helium coated 
aluminum target. The simulation was run on a 640 x 320 cell grid, spanning a 64 x 32 urn 
domain. The neutral Helium is modeled as a gas at density of 10   #/m" . The propagation 
of the  laser pulse  ionizes  the  coating  and  eventually  accelerates  the  ions, 
demonstrates that the reverse acceleration of ions also works in higher dimensions. 

This 

Figure 9: Ion phase space, x-y-vX) showing an iso-density surface for He2+ ions (yellow) and Al+ ions 
(green). Negative ion velocities are plotted upwards. The laser pulse initially propagates in positive x 
direction, gets reflected off the Al mirror and leaves the domain in negative x direction. The He2+ ions 
initially coat the inside of the spherical Al mirror and are accelerated in reverse direction by the laser pulse. 
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2.5     Focusing of Reverse Accelerated Ions 

In this section we therefore investigate whether the material ablated in the interaction of a 
strong laser pulse with an over-dense target can lead to a neutron flux sufficiently large 
for radiographic applications. An alternative application for these reverse-accelerated 
ions would be to use them as a driver for e.g. Inertial Confinement Fusion. In particular, 
one may envision a combination of forward-accelerated (sheath mechanism) and reverse- 
accelerated ion beams created by the same laser pulse, operating on different sides of a 
target, to obtain synchronized beam-beam interactions. Additionally, one may also 
envision the target as spherically shaped, resulting in converging beams to increase 
density and temperature at the beam focal point; the target would then include holes 
through which the laser beam can pass, similar to Hohlraum targets. 

We therefore start with investigating the possibility of converging ion beams from shaped 
targets. We ran simulations of a 10 jam thick foil, with a "dimple" on the near side having 
a radius of curvature of 5 urn. The plate is comprised of a neutral plasma with equal 
numbers of electrons and singly-ionized deuterium ions. Both plasmas have a density of 
2.510 7 m" . The plasma frequency is op=2.825'1015 rad/s and the initial temperature is 
130'000 K, resulting in a Debye length of 0.866 nm. While this leads to numerical 
heating of the plasma, we anticipated that the violent laser-plasma interaction will 
dominate and provide at least some qualitative results. For more quantitative results, we 
then performed subsequent simulations at higher resolution. 

SxlO"s 

4X1G"9 

-2x1 D"'  • 

-4x10"B 

-6X1Q"5 

4.Q io"*     §.oxitrB     B.o*io-e     l.oxia-5     i.z*io-5     1.4x1a-5      i.§*io_ 

Figure 10: Flow field of reverse accelerated ions. 

The laser has a wavelength of 0.8 fim, for which the plasma is slightly over-dense, 
12 n/ncr^l.44.   The laser field has a peak amplitude of 1.5 10    V/m (corresponding to an 

»17 intensity of 3 T 0   W/cm ) and a pulse duration of 20fs. 

These initial simulations were run on a 3000x2000 cell grid spanning a physical domain 
-17„ of 30 jam x 20 jam (dx = dy = 10 nm), and a time-step of 1.7310"  s. Perfectly matched 
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layer boundary conditions were used along the laser propagation direction and periodic 
boundaries in transverse direction. 

Figure 10 shows the Deuterium flow field after 1.73 ps (lOO'OOO timesteps). The figure 
clearly shows the backward motion, as well as a focusing flow of the ablated material, 
which could eventually lead to a high density population in the center of the 'dimple'. 

One of the key problems encountered in these simulations is the long timescale on which 
the interaction takes place. In addition, it would be highly useful to be able to fully 
resolve high density plasmas to avoid numerical heating, a common problem in Particle- 
In-Cell (PIC) simulations when the Debye length is not well resolved. In order to further 
investigate the focusing and to actually observe the formation of the focused ion 
population, we ran additional simulations, now with a finer grid resolution of 6000x4000 
cells (dx =dy = 5nm) and a time-step of 1.1710" 7s. In addition to the finer grid 
resolution, we also applied a [1 2 1] box-car filter to smooth each component of the 
current deposited by the charges at every time step. This resulted in a significant 
reduction of numerical heating and therefore enabled simulations on long timescales. 
Finally, we increased the laser pulse duration from 20 fs to 50 fs. 

^B^       3yB 

n^»   JK 

Figure 11: Two different views of the ion density after 1.18 ps. The laser pulse entered from the left, was 
reflected at the spherical mirror and left the domain to the left. The reversely accelerated ions form a high 
density population in the center of the mirror. The density of this population is significantly higher than the 
TNSA accelerated population on the right hand side of the foil. The boundaries of the initial distribution are 
shown as dotted lines. 

The basic steps of the laser-matter interaction in these fully 2D simulations are essentially 
the same as in the pseudo ID simulation in Section 2.3; i.e., TNSA. In this mechanism, 
the electric field of the laser pulse accelerates the electrons in the interaction region, 
which are rapidly accelerated into the target by the Lorentz force. The electrons stream 
through the foil and form a high-temperature, charged cloud out on the back side. The 
ambipolar field created by this cloud (sheath) accelerates the ions forward, while colder 
electrons are pulled back into the material (return current). If the laser pulse is long 
enough, the electrons return into the interaction region while the laser pulse is still on, 
being injected again into the foil (electron recirculation). At the same time, the ions in the 
interaction region start to move in reverse direction, due to the local positive charge left 
inside the target (reverse accelerated ions). See Figures 11 and 12. 
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While ID simulations capture all these effects, they are unable to answer questions about 
the spatial distribution of the reversely accelerated ions, especially in a shaped target. 
They also do not properly capture effects from transverse gradients; for example, the 
return current at the periphery of the channel (outside the laser pulse envelope) can 
generate strong magnetic fields and affect the ion propagation. 

Figure 12: Evolution of the ion density over time. The laser pulse propagated along the x direction and got 
reflected at the spherical mirror. Time evolves in negative Y direction. The 'ripples' on the 'canyon-wall' 
show the strong filamentation of the ablated material. After about 1 ps, a high density population in the 
center of the mirror has formed, propagating in backward direction. This population shows strong 
divergence, most likely due to the high local space charge. 

2.6     D-T Acceleration in Shaped Targets 
While strong filamentation of the reverse-accelerated ion beam may prevent a good 
focusing for beam-beam interactions, we still need to examine the potential use of the 
reverse-accelerated material shown in the previous section as a driver for nuclear fusion. 
We tested a generic configuration where the reverse-accelerated ions can be focused onto 
a target. Figure 13 shows the overall setup: the main target consists of a 10 fim thick tin 
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foil at a density of 2.5'10 m" with a 5 urn hemi-spherical cavity in the center, which 
acts as a mirror. The cavity is coated with an under-dense, 2.5 urn thick Deuterium layer 
at a density of 4.4'10 m" . Suspended at the focus of the mirror is a Tritium ball with 2 
(im diameter, also at a density of 4.4'10   m" . 

The 0.8 urn laser has a spot radius of 2.5 urn and an intensity ranging between 1.5 TO 
Wm'2 and 2.4 TO22 Wm" corresponding to peak electric fields of 1.5 TV/m to 6 TV/m. 
The simulation domain is 30 x 20 urn covered by a computational grid of 6000 x 4000 
cells and a simulation time-step of 1.06T0"17s. Perfectly matched layer boundary 
conditions are applied in the laser propagation direction and periodic boundary conditions 
in the transverse direction. Similar to the simulations in the previous section, we chose an 
electron temperature which results in a Debye length resolved by the computational grid, 
as well as filtering of the currents in order to suppress numerical noise. 

5- 
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10 12        1- 
x  [/im] 

16 18 

Figure 13: Setup of shaped target configuration: A high density shaped tin target (red) is coated with an 
under-dense deuterium film (green) with a Tritium ball (blue) suspended in the center of spherical mirror. 
The Tritium ball has a diameter of 2 um, the Deuterium coating has a thickness of 2,5 um. The 
cavity/mirror radius is 5 um. The laser pulse enters from the left, is reflected off the spherical mirror and 
gets focused in the center of the mirror. 

Figure 14 shows the development of the high density jet of ablated Deuterium. The over- 
dense lead foil, coated with the deuterium, is not shown. The peak density in the ejected 
Deuterium can reach up to 1.5 times the original Deuterium density. The Tritium ball 
explodes as a result of expulsion of electrons by the laser pulse (Coulomb explosion) and 
interacts with the counter-streaming Deuterium. 
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Figure 14: Time evolution of the D and T density for a laser amplitude of E=3el2V/m (left) and 6el2 V/m 
(right) after O.lps (a), 0.3ps (b), 0.6ps (c) and 0.9ps (d). 
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Figure 15: Deuterium (left) and Tritium (right) density distribution after 1.33 ps for a peak electric field of 
E= 3TV/m. 

Figure 15 shows the Deuterium and Tritium density distribution after 1.33 ps. While at 
that time the reverse accelerated ions form a high density peak at the original location of 
the Tritium ball, the Tritium has been spread over a large volume due to Coulomb 
explosion. 

2.7     Neutron Generation in Shaped Target 
While the previous paragraph has shown that the ablated material in a shaped target can 
be focused and generate a high density peak,  it remains 
accelerated ions have the right energy to undergo fusion. 

to be seen whether the 

Figure 16 shows the temporal development of the neutron generation inferred from the 
Deuterium and Tritium densities and local mean velocities for two different laser 
amplitudes. For both amplitudes, neutron generation initially happens where the ions 
from the Coulomb explosion of the Tritium ball penetrate the Deuterium. Later, the 
interaction of the Deuterium jets creates another location of high neutron yield. Finally, 
the Tritium density at the original Tritium ball location becomes so low, that neutrons are 
no longer produced there. 

Integrating the number of generated neutrons over the entire simulation domain allows 
estimating the total neutron flux as a function of time. Figure 17 shows the temporal 
evolution of the neutron flux for different laser peak electric fields. While increasing the 
laser peak field leads quicker to the generation of neutrons, the ions exceed the drift 
velocity of peak fusion cross-section. They therefore are lost to the generation of 
neutrons. On the other hand, for too weak a laser field, the accelerated ions are not fast 
enough and therefore do not lead to nuclear fusion. For the given configuration, a peak 
electric field of 3 TV/m maximizes the neutron flux. 
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Figure 16: Time evolution of the neutron generation for a laser amplitude of E=3el2V/m (left) and 6el2 
V/m (right) after 0.3ps (a), 0.6ps (b) and 0.9ps (c). 
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Figure 17: Neutron flux evolution for laser amplitudes E=1.5 TV/m (dash-dotted), E=2 TV/m (dash-triple- 
dotted), E = 3 TV/m (solid) and E = 6 TV/m (dashed). Increasing the amplitude leads to an increased 
momentum of the accelerated ions and therefore to a relative ion energy which is beyond the peak cross- 
section for the D-T fusion reaction. 

The neutron flux in Figure 17 is computed at a distance of 1 m away from the target. 
Even assuming a reduction of the flux by about two orders of magnitude due to an 
external moderator should lead to a sufficient flux of neutrons for radiographic 
applications. 

3       Summary 
In summary, we found that ions ablated in the interaction of a strong laser pulse with an 
over-dense plasma can be focused by shaping the target. In case of a spherically shaped 
target, this leads to the formation of a high density ion population in the center of the 
spherical mirror. Target shaping has been successfully used to focus ions accelerated via 
TNSA on the backside of the target. These accelerated ions are then used as drivers for 
Inertial Confinement Fusion. Our simulations indicate that a similar population can be 
generated at the interaction site, leading to a drive beam traveling in the backward 
direction. 

We have shown that the interaction of a femto-second laser pulse with a slightly over- 
dense target consisting of a D-T mix can be used to generate a neutron flux sufficiently 
large for radiographic applications. However, a large fraction of the D-T mix does not 
participate in the D-T fusion reaction and is therefore lost. 

In a last configuration, the laser pulse was used to strip a Tritium ball from all its 
electrons. The resulting Coulomb explosion was used to accelerate the Tritium ions. The 
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reverse ion acceleration mechanism in a shaped target generates a counter-streaming 
population of Deuterium ions. Depending on the peak electric field of the laser pulse, a 
neutron flux large enough for radiographic applications can be generated. 

The above simulations pushed 40 million particles on a 6000x4000 cell grid for about 
110,000 time-steps and produced about 250 GB of data and took about 500 CPU days 
(12,000 CPU hours). Simulations of this size are too large for performing e.g. Parameter 
studies. One possibility to reduce the simulation time is to employ higher-order particle 
shapes, which interpolate the electromagnetic field not only from the surrounding cell, 
but from a more extended region in space. Using the field values from three neighboring 
cells, it is possible to relax the constraint to resolve the Debye length and only requires 
resolution of the electron inertial length. This results in a grid resolution which is lower 
by a factor (c/vtherm)3 which can easily exceed a factor of 1,000. In addition, this yields to 
an increased maximum possible time step due to its coupling via the CFL condition. Time 
savings of factors 10,000 and more can therefore be achieved. 

4       Conclusions 
In this project, we have implemented a kinetic model for nuclear fusion in the plasma 
simulation code VORPAL. We therefore extended a kinetic reaction model implemented 
in a different project by cross-sections for the Deuterium-Tritium nuclear reaction. 

We investigated the interaction of a medium powered laser pulse with a slightly over- 
dense thin Deuterium/Tritium target. The interaction leads to the formation of a shock 
wave inside the plasma, which can accelerate particles at the shock front. This leads to 
the formation of a population of D (and T) streaming relative to a D/T background. 

Using our newly developed fusion reaction model, we were able to compute the neutron 
flux generated in this interaction. The peak neutron flux was on the order of 10 #/cm s, 
with a strong dependence on the incident laser pulse intensity. 

While the overall number of particles per shot is relatively small due to the short 
interaction time, the high repetition rate of commercially available lasers with the 
required parameters can lead to high average neutron numbers. 

Discussions with experimentalists have indicated that slightly over-dense thin targets can 
be realized using foams or gels or even using high-density gas jets. The simulation results 
therefore could be tested experimentally and possibly lead to the development of a 
compact neutron source. 

We also performed simulations of reverse acceleration by laser-plasma interaction in 
shaped targets. We have demonstrated that a focusing of the ablated material occurs and 
leads to a high-density ion population propagating in reverse direction. This population 
could be used as a driver for Inertial Confinement Fusion. 
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Particle-in-Cell simulations of high-density plasmas are computationally highly 
demanding and algorithmic enhancements should be investigated. For example, higher 
order particle shapes have demonstrated that considerable time savings can be achieved 
compared to first order interpolation for particles. 
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